Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais

Detalhes bibliográficos
Autor(a) principal: Cordeiro, Márcio Assis
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNICENTRO
Texto Completo: http://tede.unicentro.br:8080/jspui/handle/jspui/1312
Resumo: This study aimed to evaluate the performance of artificial neural networks (ANNs) and support vector machines (SVM) in the modeling of dendrometric variables in eucalyptus stands. The data used come from non-thinned commercial plantations, located in four municipalities located in the southern mesoregion of the state of Amapá and were made available by the company Amcel-Amapá florestal e celulose S / A. They come from permanent plots, temporary plots and pre-cut inventory, with ages varying between 22 and 88 months. Hypsometric, volumetric and growth and production models established in the literature were adjusted, and compared with the support vector machine technique and artificial neural networks. For each type of modeling, the data were randomly divided into two groups, 80% of the data for adjustment / training and 20% for validation / generalization. The same dendrometric variables used by the regression models were used by the MVS and ANNs. For the training and generalization of support vector machines (SVM), four configurations were used, formed from two error functions and two kernel functions. For configuration, training and generalization of the ANNs, Neuro 4.0 software was used, in which configurations of networks of the Adaline type (Adaptive Linear Element) were used; Multilayer Perceptron (MLP) and Radial Basis Functions (Radial Basis Function-RBF). Prior to the growth and production modeling, the site curves were adjusted and the production capacity was classified using the guide curve method. For that, two non-linear models were evaluated and then the stability of the site curves in the plots that had more than three measurements was evaluated. In modeling growth and production, the site index estimated by the selected equation was used. The quality of the adjustments of the regression models, and of the methodologies using ANNs and SVM, were evaluated using the correlation coefficient between the observed and estimated values (ryŷ), the square root of the mean error, expressed as a percentage of the mean (RMSE %), graphical analysis of residues (Res%). Support vector machines and artificial neural networks performed well in the estimates of height, individual volume and in the basal area and volume per hectare projections, proving to be promising techniques for applications in the area of measurement and forest management.
id UCEN_06e401fe064b7565b2c8317dacb11ae8
oai_identifier_str oai:localhost:jspui/1312
network_acronym_str UCEN
network_name_str Biblioteca Digital de Teses e Dissertações do UNICENTRO
repository_id_str
spelling Arce, Julio Eduardohttp://lattes.cnpq.br/4034397326977747Guimarães, Fabiane Aparecida Retslaffhttp://lattes.cnpq.br/6216785304671453Bonete, Izabel Passoshttp://lattes.cnpq.br/4440384372209509038.828.949-03http://lattes.cnpq.br/8250679741372197Cordeiro, Márcio Assis2021-02-17T12:12:03Z2020-03-11Cordeiro, Márcio Assis. Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais. 2020. 122 f. Dissertação (Programa de Pós-Graduação em Ciências Florestais - Mestrado) - Universidade Estadual do Centro-Oeste, Irati-PR.http://tede.unicentro.br:8080/jspui/handle/jspui/1312This study aimed to evaluate the performance of artificial neural networks (ANNs) and support vector machines (SVM) in the modeling of dendrometric variables in eucalyptus stands. The data used come from non-thinned commercial plantations, located in four municipalities located in the southern mesoregion of the state of Amapá and were made available by the company Amcel-Amapá florestal e celulose S / A. They come from permanent plots, temporary plots and pre-cut inventory, with ages varying between 22 and 88 months. Hypsometric, volumetric and growth and production models established in the literature were adjusted, and compared with the support vector machine technique and artificial neural networks. For each type of modeling, the data were randomly divided into two groups, 80% of the data for adjustment / training and 20% for validation / generalization. The same dendrometric variables used by the regression models were used by the MVS and ANNs. For the training and generalization of support vector machines (SVM), four configurations were used, formed from two error functions and two kernel functions. For configuration, training and generalization of the ANNs, Neuro 4.0 software was used, in which configurations of networks of the Adaline type (Adaptive Linear Element) were used; Multilayer Perceptron (MLP) and Radial Basis Functions (Radial Basis Function-RBF). Prior to the growth and production modeling, the site curves were adjusted and the production capacity was classified using the guide curve method. For that, two non-linear models were evaluated and then the stability of the site curves in the plots that had more than three measurements was evaluated. In modeling growth and production, the site index estimated by the selected equation was used. The quality of the adjustments of the regression models, and of the methodologies using ANNs and SVM, were evaluated using the correlation coefficient between the observed and estimated values (ryŷ), the square root of the mean error, expressed as a percentage of the mean (RMSE %), graphical analysis of residues (Res%). Support vector machines and artificial neural networks performed well in the estimates of height, individual volume and in the basal area and volume per hectare projections, proving to be promising techniques for applications in the area of measurement and forest management.Este estudo teve por objetivo avaliar o desempenho de redes neurais artificiais (RNAs) e máquinas de vetor de suporte (MVS) na modelagem de variáveis dendrométricas em povoamentos de eucalipto. Os dados utilizados são oriundos de plantios comerciais não desbastados, localizados em quatro municípios localizados da mesorregião sul do estado do Amapá e foram disponibilizados pela empresa AmcelAmapá florestal e celulose S/A. São provenientes de parcelas permanentes, parcelas temporárias e inventário pré-corte, com idades variando entre 22 e 88 meses. Foram ajustados modelos hipsométricos, volumétricos e de crescimento e produção consagrados na literatura, e comparados com a técnica de máquina de vetor de suporte e de redes neurais artificiais. Para cada tipo de modelagem, os dados foram divididos aleatoriamente em dois grupos, 80% dos dados para ajuste/treinamento e 20% para validação/generalização dos mesmos. As mesmas variáveis dendrométricas utilizadas pelos modelos de regressão, foram utilizadas pelas MVS e RNA. Para o treinamento e generalização das máquinas de vetor de suporte (MVS), foram utilizadas quatro configurações, formadas a partir de duas funções de erro e duas funções de kernel. Para configuração, treinamento e generalização das RNAs, foi utilizado o software Neuro 4.0, no qual foram utilizadas configurações de redes do tipo Adaline (Adaptive Linear Element); Multilayer Perceptron (MLP) e Funções de Base Radial (Radial Basis Function-RBF). Antecedendo a modelagem do crescimento e produção, foi realizado o ajuste das curvas de sítio e a classificação da capacidade produtiva, pelo método da curvaguia. Para tal foram avaliados dois modelos não lineares e, em seguida foi avaliada a estabilidade das curvas de sítio nas parcelas que tiveram mais de três medições. Na modelagem do crescimento e produção, utilizou-se o índice de sítio estimado pela equação selecionada. A qualidade dos ajustes dos modelos de regressão, e das metodologias utilizando RNAs e MVS, foram avaliadas utilizando-se o coeficiente de correlação entre os valores observados e estimados (ryŷ), a raiz quadrada do erro médio, expresso em porcentagem da média (RMSE%), análise gráfica dos resíduos (Res%). Máquinas de vetor de suporte e redes neurais artificiais apresentaram bom desempenho nas estimativas de altura, volume individual e nas projeções de área basal e volume por hectare, demonstrando serem técnicas promissoras para aplicações na área de mensuração e manejo florestal.Submitted by Fabiano Jucá (fjuca@unicentro.br) on 2021-02-17T12:12:03Z No. of bitstreams: 1 Márcio Assis Cordeiro.pdf: 7093220 bytes, checksum: 0e90307fef0f8370283258c54a6f24e2 (MD5)Made available in DSpace on 2021-02-17T12:12:03Z (GMT). No. of bitstreams: 1 Márcio Assis Cordeiro.pdf: 7093220 bytes, checksum: 0e90307fef0f8370283258c54a6f24e2 (MD5) Previous issue date: 2020-03-11Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://tede.unicentro.br:8080/jspui/retrieve/4744/M%c3%a1rcio%20Assis%20Cordeiro.pdf.jpghttp://tede.unicentro.br:8080/jspui/retrieve/4746/M%c3%a1rcio%20Assis%20Cordeiro.pdf.jpgporUniversidade Estadual do Centro-OestePrograma de Pós-Graduação em Ciências FlorestaisUNICENTROBrasilUnicentro::Departamento de Ciências FlorestaisModelagem do crescimento e produçãomáquina de vetor de suporteredes neurais artificiaisGrowth and production modelingsupport vector machineartificial neural networksCIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTALRECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::MANEJO FLORESTALModelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiaisModeling growth and production using a support vector machine and artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6065515305966967648600600600600600-5938256993918186975-604049389552879283-76664982548871839512075167498588264571info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do UNICENTROinstname:Universidade Estadual do Centro-Oeste (UNICENTRO)instacron:UNICENTROTHUMBNAILMárcio Assis Cordeiro.pdf.jpgMárcio Assis Cordeiro.pdf.jpgimage/jpeg3639http://localhost:8080/tede/bitstream/jspui/1312/4/M%C3%A1rcio+Assis+Cordeiro.pdf.jpgd792555cfd40b23d4dacbcab839d2856MD54TEXTMárcio Assis Cordeiro.pdf.txtMárcio Assis Cordeiro.pdf.txttext/plain194313http://localhost:8080/tede/bitstream/jspui/1312/3/M%C3%A1rcio+Assis+Cordeiro.pdf.txt26b5d661ae1dd1b7ab1f8194b1d33492MD53THUMBNAILMárcio Assis Cordeiro.pdf.jpgMárcio Assis Cordeiro.pdf.jpgimage/jpeg3639http://localhost:8080/tede/bitstream/jspui/1312/4/M%C3%A1rcio+Assis+Cordeiro.pdf.jpgd792555cfd40b23d4dacbcab839d2856MD54TEXTMárcio Assis Cordeiro.pdf.txtMárcio Assis Cordeiro.pdf.txttext/plain194313http://localhost:8080/tede/bitstream/jspui/1312/3/M%C3%A1rcio+Assis+Cordeiro.pdf.txt26b5d661ae1dd1b7ab1f8194b1d33492MD53ORIGINALMárcio Assis Cordeiro.pdfMárcio Assis Cordeiro.pdfapplication/pdf7093220http://localhost:8080/tede/bitstream/jspui/1312/2/M%C3%A1rcio+Assis+Cordeiro.pdf0e90307fef0f8370283258c54a6f24e2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82003http://localhost:8080/tede/bitstream/jspui/1312/1/license.txt6544a715df32d52b08aa3def94c4dddeMD51jspui/13122021-02-18 02:00:10.142oai:localhost:jspui/1312CkxJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSAKRXN0YWR1YWwgZG8gQ2VudHJvLU9lc3RlIChVTklDRU5UUk8pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgCmRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVU5JQ0VOVFJPIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gCnBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVTklDRU5UUk8gcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVOSUNFTlRSTyAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVTklDRU5UUk8sIFZPQ8OKIApERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFVOSUNFTlRSTyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unicentro.br:8080/jspui/PUBhttp://tede.unicentro.br/tde_oai/oai3.phprepositorio@unicentro.br||fabianoqueiroz@yahoo.com.bropendoar:2021-02-18T04:00:10Biblioteca Digital de Teses e Dissertações do UNICENTRO - Universidade Estadual do Centro-Oeste (UNICENTRO)false
dc.title.por.fl_str_mv Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais
dc.title.alternative.eng.fl_str_mv Modeling growth and production using a support vector machine and artificial neural networks
title Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais
spellingShingle Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais
Cordeiro, Márcio Assis
Modelagem do crescimento e produção
máquina de vetor de suporte
redes neurais artificiais
Growth and production modeling
support vector machine
artificial neural networks
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::MANEJO FLORESTAL
title_short Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais
title_full Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais
title_fullStr Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais
title_full_unstemmed Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais
title_sort Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais
author Cordeiro, Márcio Assis
author_facet Cordeiro, Márcio Assis
author_role author
dc.contributor.advisor1.fl_str_mv Arce, Julio Eduardo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4034397326977747
dc.contributor.advisor-co1.fl_str_mv Guimarães, Fabiane Aparecida Retslaff
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6216785304671453
dc.contributor.advisor-co2.fl_str_mv Bonete, Izabel Passos
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/4440384372209509
dc.contributor.authorID.fl_str_mv 038.828.949-03
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8250679741372197
dc.contributor.author.fl_str_mv Cordeiro, Márcio Assis
contributor_str_mv Arce, Julio Eduardo
Guimarães, Fabiane Aparecida Retslaff
Bonete, Izabel Passos
dc.subject.por.fl_str_mv Modelagem do crescimento e produção
máquina de vetor de suporte
redes neurais artificiais
topic Modelagem do crescimento e produção
máquina de vetor de suporte
redes neurais artificiais
Growth and production modeling
support vector machine
artificial neural networks
CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::MANEJO FLORESTAL
dc.subject.eng.fl_str_mv Growth and production modeling
support vector machine
artificial neural networks
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::MANEJO FLORESTAL
description This study aimed to evaluate the performance of artificial neural networks (ANNs) and support vector machines (SVM) in the modeling of dendrometric variables in eucalyptus stands. The data used come from non-thinned commercial plantations, located in four municipalities located in the southern mesoregion of the state of Amapá and were made available by the company Amcel-Amapá florestal e celulose S / A. They come from permanent plots, temporary plots and pre-cut inventory, with ages varying between 22 and 88 months. Hypsometric, volumetric and growth and production models established in the literature were adjusted, and compared with the support vector machine technique and artificial neural networks. For each type of modeling, the data were randomly divided into two groups, 80% of the data for adjustment / training and 20% for validation / generalization. The same dendrometric variables used by the regression models were used by the MVS and ANNs. For the training and generalization of support vector machines (SVM), four configurations were used, formed from two error functions and two kernel functions. For configuration, training and generalization of the ANNs, Neuro 4.0 software was used, in which configurations of networks of the Adaline type (Adaptive Linear Element) were used; Multilayer Perceptron (MLP) and Radial Basis Functions (Radial Basis Function-RBF). Prior to the growth and production modeling, the site curves were adjusted and the production capacity was classified using the guide curve method. For that, two non-linear models were evaluated and then the stability of the site curves in the plots that had more than three measurements was evaluated. In modeling growth and production, the site index estimated by the selected equation was used. The quality of the adjustments of the regression models, and of the methodologies using ANNs and SVM, were evaluated using the correlation coefficient between the observed and estimated values (ryŷ), the square root of the mean error, expressed as a percentage of the mean (RMSE %), graphical analysis of residues (Res%). Support vector machines and artificial neural networks performed well in the estimates of height, individual volume and in the basal area and volume per hectare projections, proving to be promising techniques for applications in the area of measurement and forest management.
publishDate 2020
dc.date.issued.fl_str_mv 2020-03-11
dc.date.accessioned.fl_str_mv 2021-02-17T12:12:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Cordeiro, Márcio Assis. Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais. 2020. 122 f. Dissertação (Programa de Pós-Graduação em Ciências Florestais - Mestrado) - Universidade Estadual do Centro-Oeste, Irati-PR.
dc.identifier.uri.fl_str_mv http://tede.unicentro.br:8080/jspui/handle/jspui/1312
identifier_str_mv Cordeiro, Márcio Assis. Modelagem do crescimento e produção utilizando máquina de vetor de suporte e redes neurais artificiais. 2020. 122 f. Dissertação (Programa de Pós-Graduação em Ciências Florestais - Mestrado) - Universidade Estadual do Centro-Oeste, Irati-PR.
url http://tede.unicentro.br:8080/jspui/handle/jspui/1312
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6065515305966967648
dc.relation.confidence.fl_str_mv 600
600
600
600
600
dc.relation.department.fl_str_mv -5938256993918186975
dc.relation.cnpq.fl_str_mv -604049389552879283
-7666498254887183951
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Centro-Oeste
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Florestais
dc.publisher.initials.fl_str_mv UNICENTRO
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Unicentro::Departamento de Ciências Florestais
publisher.none.fl_str_mv Universidade Estadual do Centro-Oeste
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNICENTRO
instname:Universidade Estadual do Centro-Oeste (UNICENTRO)
instacron:UNICENTRO
instname_str Universidade Estadual do Centro-Oeste (UNICENTRO)
instacron_str UNICENTRO
institution UNICENTRO
reponame_str Biblioteca Digital de Teses e Dissertações do UNICENTRO
collection Biblioteca Digital de Teses e Dissertações do UNICENTRO
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/1312/4/M%C3%A1rcio+Assis+Cordeiro.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/1312/3/M%C3%A1rcio+Assis+Cordeiro.pdf.txt
http://localhost:8080/tede/bitstream/jspui/1312/4/M%C3%A1rcio+Assis+Cordeiro.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/1312/3/M%C3%A1rcio+Assis+Cordeiro.pdf.txt
http://localhost:8080/tede/bitstream/jspui/1312/2/M%C3%A1rcio+Assis+Cordeiro.pdf
http://localhost:8080/tede/bitstream/jspui/1312/1/license.txt
bitstream.checksum.fl_str_mv d792555cfd40b23d4dacbcab839d2856
26b5d661ae1dd1b7ab1f8194b1d33492
d792555cfd40b23d4dacbcab839d2856
26b5d661ae1dd1b7ab1f8194b1d33492
0e90307fef0f8370283258c54a6f24e2
6544a715df32d52b08aa3def94c4ddde
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNICENTRO - Universidade Estadual do Centro-Oeste (UNICENTRO)
repository.mail.fl_str_mv repositorio@unicentro.br||fabianoqueiroz@yahoo.com.br
_version_ 1811733819089223680