Moduladores clínicos em pacientes portadores da doença falciforme no Amazonas

Detalhes bibliográficos
Autor(a) principal: Carneiro, Janaina Santana
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade do Estado do Amazonas (UEA)
Texto Completo: https://ri.uea.edu.br/handle/riuea/2274
Resumo: Sickle cell disease is considered one of the gravest and existing common genetic disorders in the world. The concentration of fetal hemoglobin, the haplotypes linked to globin gene βSC (HAPLO) and alpha thalassemia (TA) influence the hematological characteristics and pathophysiological clinical manifestations of the disease. This study aimed to describe the clinical modulators in patients with SS and SC profiles treated at HEMOAM. Clinical data were obtained from medical records and haematological and biochemical parameters in automatic analyzers BC5800 and A25, respectively. Molecular analyzes for HAPLO by PCR-RFLP technique, while the RT PCR. Statistical analyzes were performed in SPSS 22.0 and GraphPad Prism 5.0 programs. 222 patients were analyzed with sickle cell disease, and 202 SS and SC 20, with 42.3% for males. Compared hematological and biochemical data between hemoglobin profiles, the SC had better haematological values that the SS, with all statistically significant. The frequency of major clinical events in patients SS were; 47% vaso-occlusive events and 58.9% received at least one blood transfusion in the last 2 years. Nociceptive episodes were observed in the lumbar region at 34.7%, 29.7% abdominal, 32.2% in the lower limbs and 24.8% in the joints. Pneumonia was the most common infection (29.2%). The analysis of clinical events by gender demonstrated the female with higher frequencies to CVO (54.7%), pneumonia (54.2%), stroke (66.7%), retinopathy (60%). The TA was found only in SS patients, with 13.7% heterozygous and 2.8% homozygous. The presence of RT has improved hematological parameters in SS patients with significant values for red blood cells (p = 0.001) and hemoglobin (p = 0.026), hematocrit (p = 0.012), MCV (p = 0.012) and MCH (p = 0.011) . The markers of lipid, hepatic and renal profiles showed no significant values between genotypes of TA. The genotype distribution of haplotypes were for the SS genotype 52.5% CAR / CAR, 23.7% CAR / Ben, 18.1% Ben / Ben, 2.8% CAR / Sen, 1.7% Ben / Sen and 1.1% CAR / Cam, while for 35.3% CAR SC-I, 17.6% CAR-II, 5.9% CAR-III, 29.4% Ben-I and 11.8% Ben-II. The bone changes were more frequent in CAR haplotypes and Ben, are more affected than females (P = 0.017). Stroke was present only CAR / CAR (p <0.001). The vessel seizures - occlusive occurred in over 60% of patients and Ben CAR, and less than 20% in other haplotypes (P <0.001). Carriers of haplotypes Senegal and Cameroon had less severe clinical than CAR and Ben. Fetal hemoglobin concentrations were associated with decrease in clinical events. Our study demonstrates the great clinical diversity displayed between the SS and SC profiles in the Amazon state. The frequency of TA and HAPLO were similar to other studies in some states of Brazil. Based on our results, we conclude that the realization of this study and especially with the series made up a high sample N, contribute to confirm the importance of establishing prognostic factors in AF, as well as contribute to the subphenotypes of disease onset.
id UEA_3574178ba644df067d4b111901b3176f
oai_identifier_str oai:ri.uea.edu.br:riuea/2274
network_acronym_str UEA
network_name_str Repositório Institucional da Universidade do Estado do Amazonas (UEA)
repository_id_str
spelling Moduladores clínicos em pacientes portadores da doença falciforme no AmazonasClinical modulators in patients with sickle cell disease in AmazonasAnemia falciformeTalassemia AlfaHaplótiposHemoglobina fetal.HematologiaSickle cell disease is considered one of the gravest and existing common genetic disorders in the world. The concentration of fetal hemoglobin, the haplotypes linked to globin gene βSC (HAPLO) and alpha thalassemia (TA) influence the hematological characteristics and pathophysiological clinical manifestations of the disease. This study aimed to describe the clinical modulators in patients with SS and SC profiles treated at HEMOAM. Clinical data were obtained from medical records and haematological and biochemical parameters in automatic analyzers BC5800 and A25, respectively. Molecular analyzes for HAPLO by PCR-RFLP technique, while the RT PCR. Statistical analyzes were performed in SPSS 22.0 and GraphPad Prism 5.0 programs. 222 patients were analyzed with sickle cell disease, and 202 SS and SC 20, with 42.3% for males. Compared hematological and biochemical data between hemoglobin profiles, the SC had better haematological values that the SS, with all statistically significant. The frequency of major clinical events in patients SS were; 47% vaso-occlusive events and 58.9% received at least one blood transfusion in the last 2 years. Nociceptive episodes were observed in the lumbar region at 34.7%, 29.7% abdominal, 32.2% in the lower limbs and 24.8% in the joints. Pneumonia was the most common infection (29.2%). The analysis of clinical events by gender demonstrated the female with higher frequencies to CVO (54.7%), pneumonia (54.2%), stroke (66.7%), retinopathy (60%). The TA was found only in SS patients, with 13.7% heterozygous and 2.8% homozygous. The presence of RT has improved hematological parameters in SS patients with significant values for red blood cells (p = 0.001) and hemoglobin (p = 0.026), hematocrit (p = 0.012), MCV (p = 0.012) and MCH (p = 0.011) . The markers of lipid, hepatic and renal profiles showed no significant values between genotypes of TA. The genotype distribution of haplotypes were for the SS genotype 52.5% CAR / CAR, 23.7% CAR / Ben, 18.1% Ben / Ben, 2.8% CAR / Sen, 1.7% Ben / Sen and 1.1% CAR / Cam, while for 35.3% CAR SC-I, 17.6% CAR-II, 5.9% CAR-III, 29.4% Ben-I and 11.8% Ben-II. The bone changes were more frequent in CAR haplotypes and Ben, are more affected than females (P = 0.017). Stroke was present only CAR / CAR (p <0.001). The vessel seizures - occlusive occurred in over 60% of patients and Ben CAR, and less than 20% in other haplotypes (P <0.001). Carriers of haplotypes Senegal and Cameroon had less severe clinical than CAR and Ben. Fetal hemoglobin concentrations were associated with decrease in clinical events. Our study demonstrates the great clinical diversity displayed between the SS and SC profiles in the Amazon state. The frequency of TA and HAPLO were similar to other studies in some states of Brazil. Based on our results, we conclude that the realization of this study and especially with the series made up a high sample N, contribute to confirm the importance of establishing prognostic factors in AF, as well as contribute to the subphenotypes of disease onset.A doença falciforme é considerada uma das mais graves e comuns desordens genéticas existentes no mundo. A concentração de hemoglobina fetal, os haplótipos ligados aos genes da globina βSC (HAPLO) e a talassemia alfa (TA) influenciam as características hematológicas e as manifestações clínicas fisiopatológicas da doença. O presente estudo teve como objetivo descrever os moduladores clínicos em pacientes com perfis SS e SC atendidos na HEMOAM. Os dados clínicos foram obtidos nos prontuários médicos e parâmetros hematológicos e bioquímicos em analisadores automáticos BC5800 e A25, respectivamente. As análises moleculares para os HAPLO pela técnica de PCR-RFLP, enquanto a TA pela PCR. As análises estatísticas foram realizadas nos programas SPSS 22.0 e GraphPad Prism 5.0. Foram analisados 222 pacientes com doença falciforme, sendo 202 SS e 20 SC, com 42,3% para o gênero masculino. Quando comparados os dados hematológicos e bioquímicos entre os perfis de hemoglobina, os SC apresentaram valores hematológicos melhores que os SS, sendo todos estatisticamente significativos. As frequências dos principais eventos clínicos nos pacientes SS foram: 47% eventos vaso-oclusivos e 58,9% receberam pelo menos uma transfusão de sangue nos últimos 2 anos. Episódios álgicos foram observados na região lombar em 34,7%, 29,7% abdominal, 32,2% em membros inferiores e 24,8% nas articulações. A pneumonia foi a infecção mais comum (29,2%). A análise dos eventos clínicos por gênero demonstrou o feminino com maiores freqüências para CVO (54,7%), pneumonia (54,2%), AVC (66,7%), retinopatia (60%). A TA foi encontrada somente nos pacientes SS, com 13,7% heterozigotos e 2,8% homozigotos. A presença da TA melhorou os parâmetros hematológicos nos pacientes SS, com valores significativos para hemácias (p=0,001), hemoglobina (p=0,026), hematócrito (p=0,012), VCM (p=0,012) e HCM (p=0,011). Já os marcadores dos perfis lipídico, hepático e renal não apresentaram valores significativos entre os genótipos da TA. A distribuição genotípica dos haplótipos foram para o genótipo SS de 52,5% CAR/CAR, 23,7% CAR/Ben, 18,1% Ben/Ben, 2,8% CAR/Sen, 1,7% Ben/Sen e 1,1% CAR/Cam, enquanto para os SC de 35,3% CAR-I, 17,6% CAR-II, 5,9% CAR-III, 29,4% Ben-I e 11,8% Ben-II. As alterações ósseas foram mais frequentes nos haplótipos CAR e Ben, acometendo mais o gênero feminino (P=0,017). Acidente vascular cerebral foi presente apenas CAR/CAR (p<0,001). As crises vaso - oclusivas ocorreram em mais de 60% dos pacientes CAR e Ben, e menos de 20% nos outros haplótipos (P<0,001). Portadores dos haplótipos Senegal e Camarões apresentaram clinica menos grave do que CAR e o Ben. Concentrações de hemoglobina fetal estiveram associadas à diminuição de eventos clínicos. Nosso estudo demonstra a grande diversidade clínica apresentada entre os perfis SS e SC no estado do amazonas. As frequências de TA e dos HAPLO foram semelhantes a outros estudos realizados em alguns estados do Brasil. Tendo como base os nossos resultados, concluímos que a realização do presente estudo e principalmente com a casuística composta por um N amostral elevado, contribuiria para confirmar a importância do estabelecimento de fatores de prognóstico na AF, além de contribuir para o estabelecimento de subfenótipos da doença.Universidade do Estado do AmazonasBrasilUEAPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS Á HEMATOLOGIAMoura Neto, José Pereira deMoura Neto, José Pereira deAlbuquerque, Sérgio Roberto LopesLopes, Antonio Luiz BoechatCarneiro, Janaina Santana2020-03-11T13:56:56Z2024-09-05T18:56:44Z2020-03-112020-03-11T13:56:56Z2015-10-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://ri.uea.edu.br/handle/riuea/2274por1. Clarke GM, Higgins TN. Laboratory investigation of hemoglobinopathies and thalassemias: Review and update. Clin Chem. 2000;46(8 II):1284–90. 2. Clark BE, Thein SL. Molecular diagnosis of haemoglobin disorders. Clin Lab Haematol. 2004;26(3):159–76. 3. Bain B. Haemoglobinopathy Diagnosis. 2006. 165 p. 4. Kovalevsky AY, Chatake T, Shibayama N, Park SY, Ishikawa T, Mustyakimov M, et al. Direct determination of protonation states of histidine residues in a 2 Å neutron structure of deoxy-human normal adult hemoglobin and implications for the bohr effect. J Mol Biol [Internet]. Elsevier B.V.; 2010;398(2):276–91. 5. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480–7. 6. Mosca A, Paleari R, Leone D, Ivaldi G. The relevance of hemoglobin F measurement in the diagnosis of thalassemias and related hemoglobinopathies. Clin Biochem [Internet]. The Canadian Society of Clinical Chemists; 2009;42(18):1797–801. 7. Steinberg MH, Forget BG, Higgs DR, Weatherall DJ. Disorders of Hemoglobin: Genetics, Pathophysiology and Clinical Management. 2009. 846 p. 8. Sommer CK, Goldbeck AS, Wagner SC, Castro SM. Triagem neonatal para hemoglobinopatias : experiência de um ano na rede de saúde pública do Rio Grande do Sul , Brasil Neonatal screening for hemoglobinopathies : a oneyear experience in the public health system in Rio Grande do Sul State , Brazil. Cad Saúde Pública. 2006;22(8):1709–14. 9. Howard J, Davies SC. Haemoglobinopathies. Pediatr Child Heal. 2007;17(8):311–6. 10. Franklin Bunn H. Pathogenesis and Treatment of Sickle Cell Disease. N Engl J Med. 1997;337(11):762–9. 11. Bertholo LC, Moreira HW. Amplificação gênica alelo-específica na caracterização das hemoglobinas S, C e D e as interações entre elas e talassemias beta. J Bras Patol e Med Lab. 2006;42(4):245–51. 12. Leung WC, Leung KY, Lau ET, Tang MHY, Chan V. Alpha-thalassaemia. Semin Fetal Neonatal Med. 2008;13(4):215–22. 13. Taher A, Vichinsky E, Musallam K, Cappellini MD, Viprakasit V. Guidelines for the Management of Non Transfusion Dependent Thalassemia (Ntdt) [Internet]. 2013. 1-107 p. 14. Silveira Z, Silva E, Torreao N, Bezerra I, Medeiros T. Variantes estruturais da hemoglobina: estudo sobre prevalência em militares; Structural variants of hemoglobin: study about prevalence in military. Rev bras anal. 2008;40(2):155–7. 15. Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: An increasing global health problem. Bull World Health Organ. 2001;79(8):704–12. 16. Adorno EV, Couto FD, Moura Neto JP, Menezes JF, Rêgo M, Reis MG, et al. Hemoglobinopathies in newborns from Salvador , Bahia , Northeast Brazil Hemoglobinopatias em recém-nascidos de Salvador , Bahia , Nordeste do Brasil. Cad Saude Publica. 2005;21(1):292–8. 17. Weatherall J. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331–7. 18. Brasília M da S. Doença Falciforme: Condutas básicas para tratamento. 2013. 84 19. Payen E, Leboulch P. Advances in stem cell transplantation and gene therapy in the β-hemoglobinopathies. Hematology Am Soc Hematol Educ Program 2012;2012:276–83. 20. Brawley OW, Cornelius LJ, Edwards LR, Gamble VN, Green BL, Inturrisi C, et al. National Institutes of Health Consensus Development Conference Statement : Hydroxyurea Treatment for Sickle Cell Disease. Ann Intern Med. 2008;148(12):932–40. 21. Ebrahim SH, Khoja TAM, Elachola H, Atrash HK, Memish Z, Johnson A. Children Who Come and Go. The State of Sickle Cell Disease in ResourcePoor Countries. Am J Prev Med [Internet]. Elsevier Inc.; 2010;38(4):S568–70. 22. Garanito MP. Hemoglobinopatias: Interpretação do teste de triagem neonatal. J Pediatr (Rio J). 2008;30(3):172–6. 23. Cançado RD, Jesus J a. A doença falciforme no Brasil. Rev Bras Hematol Hemoter. 2007;29(3):204–6. 24. Felix AA, Souza HM, Ribeiro SBF. Aspectos epidemiológicos e sociais da doença falciforme. Rev Bras Hematol Hemoter. 2010;32(3):203–8. 25. Silva W dos S, Lastra A, Oliveira, Silviene Fabiana Klautau-Guimarães N, Grisolia CK. Avaliação da cobertura do programa de triagem neonatal de hemoglobinopatias em populações do Recôncavo Baiano, Brasil. Cad Saude Publica. 2006;22(12):2561–6. 26. Moraes KCM, Galioti JB. A doença falciforme: um estudo genéticopopulacional a partir de doadores de sangue em São José dos Campos, São Paulo, Brasil. Rev Bras Hematol Hemoter. 2010;32(4):286–90. 27. Naoum PC. Interferentes eritrocitários e ambientais na anemia falciforme. Rev Bras Hematol Hemoter. 2000;22(1):5–22. 28. Steinberg MH. Genetic etiologies for phenotypic diversity in sickle cell anemia. Sci WorldJ ournal. 2009;9:46–67. 29. Steinberg MH. Sickle cell anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches. ScientificWorldJournal. 2008;8:1295–324. 30. Herrick JB. Peculiar elongated and sickle shaped red blood corpuscles in a case of severe anemia. Arch Intern Med. 1910;6(5):517–21. 31. Piel FB, Patil AP, Howes RE, Nyangiri O a., Gething PW, Dewi M, et al. Global epidemiology of Sickle haemoglobin in neonates: A contemporary geostatistical model-based map and population estimates. Lancet. Elsevier Ltd; 2013;381(9861):142–51. 32. Araújo MCP, Serafim ÊSS, Castro Júnior WAP, Medeiros TMD. Prevalência de hemoglobinas anormais em recém-nascidos da cidade de Natal , Rio Grande do Norte , Brasil. Cad Saúde Pública. 2004;20(1):123–8. 33. Zago MA, Pinto ACS. Fisiopatologia das doenças falciformes : da mutação genética à insuficiência de múltiplos órgãos. Rev Bras Hematol Hemoter. 2007;29(3):207–14. 34. Lobo C, Marra VN, Silva RMG. Crises dolorosas na doença falciforme. Rev Bras Hematol Hemoter. 2007;29(3):247–58. 35. Ballas SK, Mohandas N. Pathophysiology of vaso-occlusion. Hematol Oncol Clin North Am. 1996;10(6):1221–39. 36. Miller AC, Gladwin MT. Pulmonary complications of sickle cell disease. Am J Respir Crit Care Med. 2012;185(11):1154–65. 37. Di Nuzzo DVP, Fonseca SF. Anemia falciforme e infecções. J Pediatr (Rio J). 2004;80:347–54. 85 38. Fernandes APPC, Januário JN, Cangussu CB, Macedo DL De, Viana MB. Mortality of children with sickle cell disease: a population study. J Pediatr (Rio J). 2010;0(0):279–84. 39. Filho IL da S, Ribeiro GS, Moura PG, Vechi ML, Cavalcante AC, AndradaSerpa MJ. Manifestações clínicas agudas na primeira e segunda infâncias e características moleculares da doença falciforme em um grupo de crianças do Rio de Janeiro. 2012;34(3):196–201. 40. Paladino S. Úlcera De Membros Inferiores Na Anemia Falciforme. Rev bras hematol hemoter. 2007;29(3):288–90. 41. Serjeant GR, Serjeant BE, Mohan JS, Clare A. Leg Ulceration in Sickle Cell Disease: Medieval Medicine in a Modern World. Hematol Oncol Clin North Am. 2005;19(5):943–56. 42. Ashley-Koch A, Yang Q, Olney RS. Sickle Hemoglobin (HbS) Allele and Sickle Cell Disease: A HuGe Review. Am J Epidemiol. 2000;151(9):839–45. 43. Sonati MDF, Costa FF. The genetics of blood disorders: hereditary hemoglobinopathies. J Pediatr (Rio J). 2008;84(4):40–51. 44. Itano HA, Neel J V. A new inherited abnormality of human hemoglobin. Pathology. 1950;36:613–7. 45. Diggs LW, Kraus AP, Morrison DB, Rudnicki RPT. Intraerythrocytic Crystals in a White Patient with Hemoglobin C in the Absence of Other Types of Hemoglobin. Blood. 1954;9:1172–84. 46. Araújo JT., Batissoco AC, Bodemeier L. “ In vivo ” and “ in vitro ” demonstration of hemoglobin C crystals in non-splenectomized patients. Rev Inst Med Trop Sao Paulo. 1999;41(4):235–8. 47. Angulo IL, Picado SBR. Hemoglobina C em homozigose e interação com talassemia beta. Rev Bras Hematol Hemoter. 2009;31(6):408–12. 48. Nagel RL, Fabry ME, Steinberg MH. The paradox of hemoglobin SC disease. Blood Rev. 2003;17(3):167–78. 49. Bunn HF, Noguchi CT, Hofrichter J, Schechter GP, Schechter AN, Eaton WA. Molecular and cellular pathogenesis of hemoglobin SC disease. Proc Natl Acad Sci U S A. 1982;79(23):7527–31. 50. Serjeant GR. Screening for sickle-cell disease in Brazil. Lancet. 2000;356:168– 9. 51. Cabañas-Pedro AC, Braga J a P, Camilo-Araújo RF, Silva AIM, Vicari P, Figueiredo M. Hemoglobin sickle cell disease in Brazil. Haematologica. 2013;98(1):2013. 52. Murao M, Ferraz MHC. Traço falciforme – heterozigose para hemoglobina S. Rev Bras Hematol Hemoter. 2007;29(3):223–5. 53. Braga J a. . Medidas gerais no tratamento das doenças falciformes. Rev Bras Hematol Hemoter. 2007;29(3):233–8. 54. Thompson LM, Ceja ME, Yang SP. Stem cell transplantation for treatment of sickle cell disease : Bone marrow versus cord blood transplants. Am J Heal Pharm. 2012;69:1295–302. 55. Silva MC. Eficácia e toxicidade da hidroxiuréia em crianças com anemia falciforme Effectiveness and toxicity of hydroxyurea in children with sickle cell anemia. Rev Bras Hematol Hemoter. 2006;28(2):144–8. 56. Schnog J. Sickle cell disease. A general overview. J Med. 2004;62(10):364–74. 57. Cançado RD, Lobo C, Angulo IL, Araújo PIC, Jesus J a. Protocolo clínico e diretrizes terapêuticas para uso de hidroxiureia na doença falciforme. Rev Bras Hematol Hemoter. 2009;31(5):361–6. 86 58. Adekile AD, Huisman THJ. Hb F in sickle cell anemia. Acta Haematol. 1993;49(1):16–27. 59. Cuellar-Ambrosi F, Mondragon MC, Figueroa M, Prehu C, Galacteros F, RuizLinhares A. Sickle cell anemia and beta-globin gene cluster haplotypes in Colombia. Hemoglobin. 2000;24:221–5. 60. Nadkarni A, Phanasgaonkar S, Colah R, Mohanty D, Ghosh K. Prevalence and molecular characterization of alpha thalassemia syndromes among Indians. Genet Test. 2008;12(2):177–80. 61. Tarer V, Etienne-Julan M, Diara JP, Belloy MS, Mukizi-Mukaza M, Elion J, et al. Sickle cell anemia in Guadeloupean children: Pattern and prevalence of acute clinical events. Eur J Haematol. 2006;76(3):193–9. 62. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, et al. Fetal hemoglobin in sickle cell anemia. Blood. 2011;118(1):19–27. 63. Mousinho-Ribeiro R de C, Cardoso G de L, Sousa ÍEL, Martins PKC. Importância da avaliação da hemoglobina fetal na clínica da anemia falciforme. Rev Bras Hematol Hemoter. 2008;30(2):136–41. 64. Stuart MJ, Nagel RL. Sickle-cell disease. Lancet. 2004;364:1343–60. 65. Antonarakis SE, Kazazian HH, Orkin SH. DNA polymorphism and molecular pathology of the human globin gene clusters. Hum Genet. 1985;1–14. 66. Steinberg MH, Lu ZH, Nagel RL, Venkataramani S, Milner PP, Huey L, et al. Hematological effects of atypical and cameroon beta-globin gene haplotypes in adult sickle cell anemia. Am J Hematol. 1998;59(2):121–6. 67. Galiza Neto GC De, Pitombeira MDS. Aspectos moleculares da anemia falciforme. J Bras Patol e Med Lab. 2003;39(1). 68. Nagel RL. The origin of the hemoglobin S gene: clinical, genetic and anthropological consequences. Einstein Q J Biol Med. 1984;2(1):53–62. 69. Loggetto SR. Sickle cell anemia : clinical diversity and beta S-globin haplotypes. Rev Bras Hematol Hemoter. 2013;31:155–7. 70. Gonçalves MS, Bomfim GC, Maciel E, Cerqueira I, Lyra I, Zanette A, et al. ß S -Haplotypes in sickle cell anemia patients from Salvador , Bahia , Northeastern Brazil. Brazilian J Med Biol Res. 2003;36:1283–8. 71. Zago MA, Silva WA, Dalle B, Gualandro S, Hutz MH, Lapoumeroulie C, et al. Atypical Beta S Haplotypes Are Generated by Diverse Genetic Mechanisms. Am J Hematol. 2000;63(2):79–84. 72. Cabral CHK, Serafim ÉSS, Medeiros WRDB De, Fernandes TAADM, Kimura EM, Costa FF, et al. Determination of beta S haplotypes in patients with sicklecell anemia in the state of Rio Grande do Norte, Brazil. Genet Mol Biol. 2011;34(3):421–4. 73. Okumura JV, Lobo CLDC, Bonini-Domingos CR. Beta-S globin haplotypes in patients with sickle cell anemia: one approach to understand the diversity in Brazil. Rev Bras Hematol Hemoter. 2013;35(1):71–2. 74. Galiza Neto GC De, Pitombeira MDS, Vieira HF, Vieira MLC, Farias DAB. Análise dos haplótipos do gene da betaS-globina no Ceará. J Bras Patol e Med Lab. 2005;41(5):315–21. 75. Bhagat S, Patra PK, Thakur AS. Fetal haemoglobin and beta-globin gene cluster haplotypes among sickle cell patients in Chhattisgarh. J Clin Diagnostic Res. 2013;7(2):269–72. 76. Powars D., Chan L, Schroeder W. Beta S-gene-cluster haplotypes in sickle cell anemia: clinical implications. Am J Pediatr Hematol Oncol. 1990;12(3):367–74. 77. Harteveld CL, Higgs DR. Alpha-thalassaemia. Orphanet J Rare Dis. 2010;5:13. 87 78. Aydinok Y. Thalassemia. Hematology. 2012;17:28–31. 79. Tomé-Alves R, Marchi-Salvador DP, Orlando GM, Palharini L a., Imperial RE, Naoum PC, et al. Hemoglobinas AS/Alfa talassemia - importância diagnóstica. Rev Bras H. 2000;22(3):388–94. 80. Vichinsky E. Complexity of alpha thalassemia: Growing health problem with new approaches to screening, diagnosis, and therapy. Ann N Y Acad Sci. 2010;1202:180–7. 81. Orlando GM, Naoum PC, Bonini-domingos CR. Diagnóstico laboratorial de hemoglobinopatias em populações diferenciadas. Rev Bras Hematol Hemoter. 2000;22(2):111–21. 82. Figueiredo MS, Kerbauy J, Gonçalves MS, Arruda VR, Saad STO, Sonati MF, et al. Effect of alfa Thalassemia and beta Globin Gene Cluster Haplotypes on the Hematological and Clinical Features of Sickle-Cell Anemia in Brazil. Am J Hematol. 1996;76:72–6. 83. Lyra IM, Gonçalves MS, Braga JAP, Gesteira M de F, Carvalho MH, Terezinha S, et al. Clinical , hematological , and molecular characterization of sickle cell anemia pediatric patients from two different cities in Brazil. Cad Saúde Pública. 2005;21(4):1287–90. 84. Fabry ME, Mears JG, Patel P, Rego KS, Carmichael LD, Martinez G, et al. Dense Cells in Sickle Cell Anemia: The Effects of Gene Interation. Blood. 1984;64(5):1042–6. 85. Dacie J V. Practical Haematology. 1995. 1277-1287 p. 86. Baysal E, Huisman THJ. Detection of common deletional α-thalassemia-2 determinants by PCR. Am J Hematol. 1994;46(3):208–13. 87. Foglietta E, Deidda G, Graziani B, Modiano G, Bianco I. Detection of α-globin gene disorders by a simple PCR methodology. Haematologica. 1996;81(5):387–96. 88. Sutton M, Bouhassi EE, Nagel RL. Polymerase Chain Reaction Amplification Applied to the determination of β-like globin gene cluster haplotypes. Am J Hematol. 1989;32(1):66–9. 89. Powars D., Hiti A. Sickle cell anemia. Beta S gene cluster haplotypes as genetic markers for severe disease expression. Am J Dis Child. 1993;147:1197–202. 90. Steinberg MH. Genetic modulation of cickle cell anemia. Proc Soc Exp Biol Med. 1995;209:1–13. 91. Ofori-Acquah SF, Lalloz MR, Serjeant G, Layton DM. Dominant influence of gamma-globin promoter polymorphisms on fetal haemoglobin expression in sickle cell disease. Cell Mol Biol. 2004;50:35–42. 92. Adekile AD, Kitundu MN, Gu LH, Lanclos KD, Adeodu OO, Huisman TH. Haplotypes in SS patients from Nigeria; characterization of one atypical beta S haplotype no. 19 (Benin) associated with elevated HB F and high G gamma levels. Ann Hematol. 1992;65:41–5. 93. Platt OS, Thorington BD, Brambilla DJ. Pain in sickle cell disease. Rates and risk factors. N Engl J Med. 1991;325:11–6. 94. Sebastiani P, Nolan VG, Baldwin CT, Abad-Grau MM, Wang L, Adewoye AH, et al. A network model to predict the risk of death in sickle cell disease. Blood. 2007;110(7):2727–35. 95. Adams RJ, Kutlar A, Mckie V, Carl E, Nichols FT, Liu JC, et al. Alpha thalassemia and stroke risk in sickle cell anemia. Am J Hematol. 1994;45:279– 82. 88 96. Abboud MR, Musallam KM. Sickle cell disease at the dawn of the molecular era. Hemoglobin. 2009;33(1):93–106. 97. Okpala I. Leukocyte adhesion and the pathophysiology of sickle cell disease. Curr Opin Hematol. 2006;13(1):40–4. 98. Canalli AA, Franco-Penteado CF, Saad ST, Conran N, Costa FF. Increased adhesive properties of neutrophils in sickle cell disease may be reversed by pharmacological nitric oxide donation. Haematologica. 2008; 99. Traina F, Saad STO. Complicações hepáticas na doença falciforme. Rev Bras Hematol Hemoter. 2007;29(3):299–303. 100. Naum FA. Alterations of the lipid profile in anemia. Rev Bras Hematol Hemoter. 2005;27(3):223–6. 101. Colella MP, Paula EV De, Machado-neto JA, Conran N, Annichino-bizzacchi JM, Costa FF, et al. Elevated hypercoagulability markers in hemoglobin SC disease. Haematologica. 2015;100(4):466–71. 102. Seixas MO, Rocha LC, Carvalho MB, Menezes JF, Lyra IM, Nascimento VML, et al. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease. Lipids Health Dis. 2010;9(91):1–9. 103. Steinberg MH. Predicting clinical severity in sickle cell anaemia. Br J Haematol. 2005;129:465–81. 104. Gualandro SFM, Fonseca HH, Yokomizo IK, Gualandro DM, Liliana M. Cohort study of adult patients with haemoglobin SC disease : clinical characteristics and predictors of mortality. Br J Haematol. 2015;1–7. 105. Camilo-araújo RF, Amancio OMS, Figueiredo MS, Cabanãs-pedro AC, Braga JAP. Molecular analysis and association with clinical and laboratory manifestations in children with sickle cell anemia. Rev Bras Hematol Hemoter. 2014;36(5):334–9. 106. Cardoso GL, Yukiko S, Takanashi L, Guerreiro JF. Inherited hemoglobin disorders in an Afro-Amazonian community : Saracura. Genet Mol Biol. 2012;35(3):553–6. 107. Nagel RL, Steinberg MH. Genetics of the βS gene: origins, genetic epidemiology, and epistasis in sickle cell anemia. Disord hemoglobin – genetics, pathophisiology, Clin Manag. 2001;711–55. 108. Rumaney MB, Ngo Bitoungui VJ, Vorster AA, Ramesar R, Kengne AP, Ngogang J, et al. The co-inheritance of alpha-thalassemia and sickle cell anemia is associated with better hematological indices and lower consultations rate in Cameroonian patients and could improve their survival. PLoS One. 2014;9(6):1–10. 109. Pandey S, Pandey S, Mishra RM, Sharma M, Saxena R. Genotypic influence of α -deletions on the phenotype of Indian sickle cell anemia patients. Korean J Hematol. 2011;46(3):192–5. 110. Pante-de-Sousa G, Mousinho-Ribeiro R de C, Guerreiro JF. Origin of the hemoglobin S gene in a northern Brazilian population: the combined effects of slave trade and internal migrations. Genet Mol Biol. 1998;21(4). 111. Pante-de-Sousa G, Mousinho-Ribeiro R de C, Santos EJM, Guerreiro JF. βglobin haplotypes analysis in Afro-Brazilians from the Amazon Region: evidence for a significant gene flow from Atlantic West Africa. Ann Hum Biol. 1999;26(4):365–73. 112. Antwi-Boasiako C, Frimpong E, Ababio GK, Dzudzor B, Ekem I, Antwi DA. Sickle Cell Disease: Reappraisal of the role of foetal Haemoglobin levels in the frequency of Vaso-Occlusive Crisis. Ghana Med J. 2015;49(2):102–6. 89 113. Sobrinho EF de A, Saraiva JC de P, Silva JN, Silva APS, Lima RC. Retinal Sings in patients with sickle cell disease. Rev Bras Oftalmol. 2011;70(5):284–9. 114. Silva LB, Gonçalves RP, Martins MF. Estudo da associação entre os níveis de hemoglobina fetal e o prognóstico dos pacientes com anemia falciforme. Rev Bras Hematol Hemoter. 2009;31(6):417–20.Atribuição-NãoComercial-SemDerivados 3.0 Brasilinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade do Estado do Amazonas (UEA)instname:Universidade do Estado do Amazonas (UEA)instacron:UEA2024-09-25T21:22:52Zoai:ri.uea.edu.br:riuea/2274Repositório InstitucionalPUBhttps://ri.uea.edu.br/server/oai/requestbibliotecacentral@uea.edu.bropendoar:2024-09-25T21:22:52Repositório Institucional da Universidade do Estado do Amazonas (UEA) - Universidade do Estado do Amazonas (UEA)false
dc.title.none.fl_str_mv Moduladores clínicos em pacientes portadores da doença falciforme no Amazonas
Clinical modulators in patients with sickle cell disease in Amazonas
title Moduladores clínicos em pacientes portadores da doença falciforme no Amazonas
spellingShingle Moduladores clínicos em pacientes portadores da doença falciforme no Amazonas
Carneiro, Janaina Santana
Anemia falciforme
Talassemia Alfa
Haplótipos
Hemoglobina fetal.
Hematologia
title_short Moduladores clínicos em pacientes portadores da doença falciforme no Amazonas
title_full Moduladores clínicos em pacientes portadores da doença falciforme no Amazonas
title_fullStr Moduladores clínicos em pacientes portadores da doença falciforme no Amazonas
title_full_unstemmed Moduladores clínicos em pacientes portadores da doença falciforme no Amazonas
title_sort Moduladores clínicos em pacientes portadores da doença falciforme no Amazonas
author Carneiro, Janaina Santana
author_facet Carneiro, Janaina Santana
author_role author
dc.contributor.none.fl_str_mv Moura Neto, José Pereira de
Moura Neto, José Pereira de
Albuquerque, Sérgio Roberto Lopes
Lopes, Antonio Luiz Boechat
dc.contributor.author.fl_str_mv Carneiro, Janaina Santana
dc.subject.por.fl_str_mv Anemia falciforme
Talassemia Alfa
Haplótipos
Hemoglobina fetal.
Hematologia
topic Anemia falciforme
Talassemia Alfa
Haplótipos
Hemoglobina fetal.
Hematologia
description Sickle cell disease is considered one of the gravest and existing common genetic disorders in the world. The concentration of fetal hemoglobin, the haplotypes linked to globin gene βSC (HAPLO) and alpha thalassemia (TA) influence the hematological characteristics and pathophysiological clinical manifestations of the disease. This study aimed to describe the clinical modulators in patients with SS and SC profiles treated at HEMOAM. Clinical data were obtained from medical records and haematological and biochemical parameters in automatic analyzers BC5800 and A25, respectively. Molecular analyzes for HAPLO by PCR-RFLP technique, while the RT PCR. Statistical analyzes were performed in SPSS 22.0 and GraphPad Prism 5.0 programs. 222 patients were analyzed with sickle cell disease, and 202 SS and SC 20, with 42.3% for males. Compared hematological and biochemical data between hemoglobin profiles, the SC had better haematological values that the SS, with all statistically significant. The frequency of major clinical events in patients SS were; 47% vaso-occlusive events and 58.9% received at least one blood transfusion in the last 2 years. Nociceptive episodes were observed in the lumbar region at 34.7%, 29.7% abdominal, 32.2% in the lower limbs and 24.8% in the joints. Pneumonia was the most common infection (29.2%). The analysis of clinical events by gender demonstrated the female with higher frequencies to CVO (54.7%), pneumonia (54.2%), stroke (66.7%), retinopathy (60%). The TA was found only in SS patients, with 13.7% heterozygous and 2.8% homozygous. The presence of RT has improved hematological parameters in SS patients with significant values for red blood cells (p = 0.001) and hemoglobin (p = 0.026), hematocrit (p = 0.012), MCV (p = 0.012) and MCH (p = 0.011) . The markers of lipid, hepatic and renal profiles showed no significant values between genotypes of TA. The genotype distribution of haplotypes were for the SS genotype 52.5% CAR / CAR, 23.7% CAR / Ben, 18.1% Ben / Ben, 2.8% CAR / Sen, 1.7% Ben / Sen and 1.1% CAR / Cam, while for 35.3% CAR SC-I, 17.6% CAR-II, 5.9% CAR-III, 29.4% Ben-I and 11.8% Ben-II. The bone changes were more frequent in CAR haplotypes and Ben, are more affected than females (P = 0.017). Stroke was present only CAR / CAR (p <0.001). The vessel seizures - occlusive occurred in over 60% of patients and Ben CAR, and less than 20% in other haplotypes (P <0.001). Carriers of haplotypes Senegal and Cameroon had less severe clinical than CAR and Ben. Fetal hemoglobin concentrations were associated with decrease in clinical events. Our study demonstrates the great clinical diversity displayed between the SS and SC profiles in the Amazon state. The frequency of TA and HAPLO were similar to other studies in some states of Brazil. Based on our results, we conclude that the realization of this study and especially with the series made up a high sample N, contribute to confirm the importance of establishing prognostic factors in AF, as well as contribute to the subphenotypes of disease onset.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-26
2020-03-11T13:56:56Z
2020-03-11
2020-03-11T13:56:56Z
2024-09-05T18:56:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ri.uea.edu.br/handle/riuea/2274
url https://ri.uea.edu.br/handle/riuea/2274
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 1. Clarke GM, Higgins TN. Laboratory investigation of hemoglobinopathies and thalassemias: Review and update. Clin Chem. 2000;46(8 II):1284–90. 2. Clark BE, Thein SL. Molecular diagnosis of haemoglobin disorders. Clin Lab Haematol. 2004;26(3):159–76. 3. Bain B. Haemoglobinopathy Diagnosis. 2006. 165 p. 4. Kovalevsky AY, Chatake T, Shibayama N, Park SY, Ishikawa T, Mustyakimov M, et al. Direct determination of protonation states of histidine residues in a 2 Å neutron structure of deoxy-human normal adult hemoglobin and implications for the bohr effect. J Mol Biol [Internet]. Elsevier B.V.; 2010;398(2):276–91. 5. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480–7. 6. Mosca A, Paleari R, Leone D, Ivaldi G. The relevance of hemoglobin F measurement in the diagnosis of thalassemias and related hemoglobinopathies. Clin Biochem [Internet]. The Canadian Society of Clinical Chemists; 2009;42(18):1797–801. 7. Steinberg MH, Forget BG, Higgs DR, Weatherall DJ. Disorders of Hemoglobin: Genetics, Pathophysiology and Clinical Management. 2009. 846 p. 8. Sommer CK, Goldbeck AS, Wagner SC, Castro SM. Triagem neonatal para hemoglobinopatias : experiência de um ano na rede de saúde pública do Rio Grande do Sul , Brasil Neonatal screening for hemoglobinopathies : a oneyear experience in the public health system in Rio Grande do Sul State , Brazil. Cad Saúde Pública. 2006;22(8):1709–14. 9. Howard J, Davies SC. Haemoglobinopathies. Pediatr Child Heal. 2007;17(8):311–6. 10. Franklin Bunn H. Pathogenesis and Treatment of Sickle Cell Disease. N Engl J Med. 1997;337(11):762–9. 11. Bertholo LC, Moreira HW. Amplificação gênica alelo-específica na caracterização das hemoglobinas S, C e D e as interações entre elas e talassemias beta. J Bras Patol e Med Lab. 2006;42(4):245–51. 12. Leung WC, Leung KY, Lau ET, Tang MHY, Chan V. Alpha-thalassaemia. Semin Fetal Neonatal Med. 2008;13(4):215–22. 13. Taher A, Vichinsky E, Musallam K, Cappellini MD, Viprakasit V. Guidelines for the Management of Non Transfusion Dependent Thalassemia (Ntdt) [Internet]. 2013. 1-107 p. 14. Silveira Z, Silva E, Torreao N, Bezerra I, Medeiros T. Variantes estruturais da hemoglobina: estudo sobre prevalência em militares; Structural variants of hemoglobin: study about prevalence in military. Rev bras anal. 2008;40(2):155–7. 15. Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: An increasing global health problem. Bull World Health Organ. 2001;79(8):704–12. 16. Adorno EV, Couto FD, Moura Neto JP, Menezes JF, Rêgo M, Reis MG, et al. Hemoglobinopathies in newborns from Salvador , Bahia , Northeast Brazil Hemoglobinopatias em recém-nascidos de Salvador , Bahia , Nordeste do Brasil. Cad Saude Publica. 2005;21(1):292–8. 17. Weatherall J. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331–7. 18. Brasília M da S. Doença Falciforme: Condutas básicas para tratamento. 2013. 84 19. Payen E, Leboulch P. Advances in stem cell transplantation and gene therapy in the β-hemoglobinopathies. Hematology Am Soc Hematol Educ Program 2012;2012:276–83. 20. Brawley OW, Cornelius LJ, Edwards LR, Gamble VN, Green BL, Inturrisi C, et al. National Institutes of Health Consensus Development Conference Statement : Hydroxyurea Treatment for Sickle Cell Disease. Ann Intern Med. 2008;148(12):932–40. 21. Ebrahim SH, Khoja TAM, Elachola H, Atrash HK, Memish Z, Johnson A. Children Who Come and Go. The State of Sickle Cell Disease in ResourcePoor Countries. Am J Prev Med [Internet]. Elsevier Inc.; 2010;38(4):S568–70. 22. Garanito MP. Hemoglobinopatias: Interpretação do teste de triagem neonatal. J Pediatr (Rio J). 2008;30(3):172–6. 23. Cançado RD, Jesus J a. A doença falciforme no Brasil. Rev Bras Hematol Hemoter. 2007;29(3):204–6. 24. Felix AA, Souza HM, Ribeiro SBF. Aspectos epidemiológicos e sociais da doença falciforme. Rev Bras Hematol Hemoter. 2010;32(3):203–8. 25. Silva W dos S, Lastra A, Oliveira, Silviene Fabiana Klautau-Guimarães N, Grisolia CK. Avaliação da cobertura do programa de triagem neonatal de hemoglobinopatias em populações do Recôncavo Baiano, Brasil. Cad Saude Publica. 2006;22(12):2561–6. 26. Moraes KCM, Galioti JB. A doença falciforme: um estudo genéticopopulacional a partir de doadores de sangue em São José dos Campos, São Paulo, Brasil. Rev Bras Hematol Hemoter. 2010;32(4):286–90. 27. Naoum PC. Interferentes eritrocitários e ambientais na anemia falciforme. Rev Bras Hematol Hemoter. 2000;22(1):5–22. 28. Steinberg MH. Genetic etiologies for phenotypic diversity in sickle cell anemia. Sci WorldJ ournal. 2009;9:46–67. 29. Steinberg MH. Sickle cell anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches. ScientificWorldJournal. 2008;8:1295–324. 30. Herrick JB. Peculiar elongated and sickle shaped red blood corpuscles in a case of severe anemia. Arch Intern Med. 1910;6(5):517–21. 31. Piel FB, Patil AP, Howes RE, Nyangiri O a., Gething PW, Dewi M, et al. Global epidemiology of Sickle haemoglobin in neonates: A contemporary geostatistical model-based map and population estimates. Lancet. Elsevier Ltd; 2013;381(9861):142–51. 32. Araújo MCP, Serafim ÊSS, Castro Júnior WAP, Medeiros TMD. Prevalência de hemoglobinas anormais em recém-nascidos da cidade de Natal , Rio Grande do Norte , Brasil. Cad Saúde Pública. 2004;20(1):123–8. 33. Zago MA, Pinto ACS. Fisiopatologia das doenças falciformes : da mutação genética à insuficiência de múltiplos órgãos. Rev Bras Hematol Hemoter. 2007;29(3):207–14. 34. Lobo C, Marra VN, Silva RMG. Crises dolorosas na doença falciforme. Rev Bras Hematol Hemoter. 2007;29(3):247–58. 35. Ballas SK, Mohandas N. Pathophysiology of vaso-occlusion. Hematol Oncol Clin North Am. 1996;10(6):1221–39. 36. Miller AC, Gladwin MT. Pulmonary complications of sickle cell disease. Am J Respir Crit Care Med. 2012;185(11):1154–65. 37. Di Nuzzo DVP, Fonseca SF. Anemia falciforme e infecções. J Pediatr (Rio J). 2004;80:347–54. 85 38. Fernandes APPC, Januário JN, Cangussu CB, Macedo DL De, Viana MB. Mortality of children with sickle cell disease: a population study. J Pediatr (Rio J). 2010;0(0):279–84. 39. Filho IL da S, Ribeiro GS, Moura PG, Vechi ML, Cavalcante AC, AndradaSerpa MJ. Manifestações clínicas agudas na primeira e segunda infâncias e características moleculares da doença falciforme em um grupo de crianças do Rio de Janeiro. 2012;34(3):196–201. 40. Paladino S. Úlcera De Membros Inferiores Na Anemia Falciforme. Rev bras hematol hemoter. 2007;29(3):288–90. 41. Serjeant GR, Serjeant BE, Mohan JS, Clare A. Leg Ulceration in Sickle Cell Disease: Medieval Medicine in a Modern World. Hematol Oncol Clin North Am. 2005;19(5):943–56. 42. Ashley-Koch A, Yang Q, Olney RS. Sickle Hemoglobin (HbS) Allele and Sickle Cell Disease: A HuGe Review. Am J Epidemiol. 2000;151(9):839–45. 43. Sonati MDF, Costa FF. The genetics of blood disorders: hereditary hemoglobinopathies. J Pediatr (Rio J). 2008;84(4):40–51. 44. Itano HA, Neel J V. A new inherited abnormality of human hemoglobin. Pathology. 1950;36:613–7. 45. Diggs LW, Kraus AP, Morrison DB, Rudnicki RPT. Intraerythrocytic Crystals in a White Patient with Hemoglobin C in the Absence of Other Types of Hemoglobin. Blood. 1954;9:1172–84. 46. Araújo JT., Batissoco AC, Bodemeier L. “ In vivo ” and “ in vitro ” demonstration of hemoglobin C crystals in non-splenectomized patients. Rev Inst Med Trop Sao Paulo. 1999;41(4):235–8. 47. Angulo IL, Picado SBR. Hemoglobina C em homozigose e interação com talassemia beta. Rev Bras Hematol Hemoter. 2009;31(6):408–12. 48. Nagel RL, Fabry ME, Steinberg MH. The paradox of hemoglobin SC disease. Blood Rev. 2003;17(3):167–78. 49. Bunn HF, Noguchi CT, Hofrichter J, Schechter GP, Schechter AN, Eaton WA. Molecular and cellular pathogenesis of hemoglobin SC disease. Proc Natl Acad Sci U S A. 1982;79(23):7527–31. 50. Serjeant GR. Screening for sickle-cell disease in Brazil. Lancet. 2000;356:168– 9. 51. Cabañas-Pedro AC, Braga J a P, Camilo-Araújo RF, Silva AIM, Vicari P, Figueiredo M. Hemoglobin sickle cell disease in Brazil. Haematologica. 2013;98(1):2013. 52. Murao M, Ferraz MHC. Traço falciforme – heterozigose para hemoglobina S. Rev Bras Hematol Hemoter. 2007;29(3):223–5. 53. Braga J a. . Medidas gerais no tratamento das doenças falciformes. Rev Bras Hematol Hemoter. 2007;29(3):233–8. 54. Thompson LM, Ceja ME, Yang SP. Stem cell transplantation for treatment of sickle cell disease : Bone marrow versus cord blood transplants. Am J Heal Pharm. 2012;69:1295–302. 55. Silva MC. Eficácia e toxicidade da hidroxiuréia em crianças com anemia falciforme Effectiveness and toxicity of hydroxyurea in children with sickle cell anemia. Rev Bras Hematol Hemoter. 2006;28(2):144–8. 56. Schnog J. Sickle cell disease. A general overview. J Med. 2004;62(10):364–74. 57. Cançado RD, Lobo C, Angulo IL, Araújo PIC, Jesus J a. Protocolo clínico e diretrizes terapêuticas para uso de hidroxiureia na doença falciforme. Rev Bras Hematol Hemoter. 2009;31(5):361–6. 86 58. Adekile AD, Huisman THJ. Hb F in sickle cell anemia. Acta Haematol. 1993;49(1):16–27. 59. Cuellar-Ambrosi F, Mondragon MC, Figueroa M, Prehu C, Galacteros F, RuizLinhares A. Sickle cell anemia and beta-globin gene cluster haplotypes in Colombia. Hemoglobin. 2000;24:221–5. 60. Nadkarni A, Phanasgaonkar S, Colah R, Mohanty D, Ghosh K. Prevalence and molecular characterization of alpha thalassemia syndromes among Indians. Genet Test. 2008;12(2):177–80. 61. Tarer V, Etienne-Julan M, Diara JP, Belloy MS, Mukizi-Mukaza M, Elion J, et al. Sickle cell anemia in Guadeloupean children: Pattern and prevalence of acute clinical events. Eur J Haematol. 2006;76(3):193–9. 62. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, et al. Fetal hemoglobin in sickle cell anemia. Blood. 2011;118(1):19–27. 63. Mousinho-Ribeiro R de C, Cardoso G de L, Sousa ÍEL, Martins PKC. Importância da avaliação da hemoglobina fetal na clínica da anemia falciforme. Rev Bras Hematol Hemoter. 2008;30(2):136–41. 64. Stuart MJ, Nagel RL. Sickle-cell disease. Lancet. 2004;364:1343–60. 65. Antonarakis SE, Kazazian HH, Orkin SH. DNA polymorphism and molecular pathology of the human globin gene clusters. Hum Genet. 1985;1–14. 66. Steinberg MH, Lu ZH, Nagel RL, Venkataramani S, Milner PP, Huey L, et al. Hematological effects of atypical and cameroon beta-globin gene haplotypes in adult sickle cell anemia. Am J Hematol. 1998;59(2):121–6. 67. Galiza Neto GC De, Pitombeira MDS. Aspectos moleculares da anemia falciforme. J Bras Patol e Med Lab. 2003;39(1). 68. Nagel RL. The origin of the hemoglobin S gene: clinical, genetic and anthropological consequences. Einstein Q J Biol Med. 1984;2(1):53–62. 69. Loggetto SR. Sickle cell anemia : clinical diversity and beta S-globin haplotypes. Rev Bras Hematol Hemoter. 2013;31:155–7. 70. Gonçalves MS, Bomfim GC, Maciel E, Cerqueira I, Lyra I, Zanette A, et al. ß S -Haplotypes in sickle cell anemia patients from Salvador , Bahia , Northeastern Brazil. Brazilian J Med Biol Res. 2003;36:1283–8. 71. Zago MA, Silva WA, Dalle B, Gualandro S, Hutz MH, Lapoumeroulie C, et al. Atypical Beta S Haplotypes Are Generated by Diverse Genetic Mechanisms. Am J Hematol. 2000;63(2):79–84. 72. Cabral CHK, Serafim ÉSS, Medeiros WRDB De, Fernandes TAADM, Kimura EM, Costa FF, et al. Determination of beta S haplotypes in patients with sicklecell anemia in the state of Rio Grande do Norte, Brazil. Genet Mol Biol. 2011;34(3):421–4. 73. Okumura JV, Lobo CLDC, Bonini-Domingos CR. Beta-S globin haplotypes in patients with sickle cell anemia: one approach to understand the diversity in Brazil. Rev Bras Hematol Hemoter. 2013;35(1):71–2. 74. Galiza Neto GC De, Pitombeira MDS, Vieira HF, Vieira MLC, Farias DAB. Análise dos haplótipos do gene da betaS-globina no Ceará. J Bras Patol e Med Lab. 2005;41(5):315–21. 75. Bhagat S, Patra PK, Thakur AS. Fetal haemoglobin and beta-globin gene cluster haplotypes among sickle cell patients in Chhattisgarh. J Clin Diagnostic Res. 2013;7(2):269–72. 76. Powars D., Chan L, Schroeder W. Beta S-gene-cluster haplotypes in sickle cell anemia: clinical implications. Am J Pediatr Hematol Oncol. 1990;12(3):367–74. 77. Harteveld CL, Higgs DR. Alpha-thalassaemia. Orphanet J Rare Dis. 2010;5:13. 87 78. Aydinok Y. Thalassemia. Hematology. 2012;17:28–31. 79. Tomé-Alves R, Marchi-Salvador DP, Orlando GM, Palharini L a., Imperial RE, Naoum PC, et al. Hemoglobinas AS/Alfa talassemia - importância diagnóstica. Rev Bras H. 2000;22(3):388–94. 80. Vichinsky E. Complexity of alpha thalassemia: Growing health problem with new approaches to screening, diagnosis, and therapy. Ann N Y Acad Sci. 2010;1202:180–7. 81. Orlando GM, Naoum PC, Bonini-domingos CR. Diagnóstico laboratorial de hemoglobinopatias em populações diferenciadas. Rev Bras Hematol Hemoter. 2000;22(2):111–21. 82. Figueiredo MS, Kerbauy J, Gonçalves MS, Arruda VR, Saad STO, Sonati MF, et al. Effect of alfa Thalassemia and beta Globin Gene Cluster Haplotypes on the Hematological and Clinical Features of Sickle-Cell Anemia in Brazil. Am J Hematol. 1996;76:72–6. 83. Lyra IM, Gonçalves MS, Braga JAP, Gesteira M de F, Carvalho MH, Terezinha S, et al. Clinical , hematological , and molecular characterization of sickle cell anemia pediatric patients from two different cities in Brazil. Cad Saúde Pública. 2005;21(4):1287–90. 84. Fabry ME, Mears JG, Patel P, Rego KS, Carmichael LD, Martinez G, et al. Dense Cells in Sickle Cell Anemia: The Effects of Gene Interation. Blood. 1984;64(5):1042–6. 85. Dacie J V. Practical Haematology. 1995. 1277-1287 p. 86. Baysal E, Huisman THJ. Detection of common deletional α-thalassemia-2 determinants by PCR. Am J Hematol. 1994;46(3):208–13. 87. Foglietta E, Deidda G, Graziani B, Modiano G, Bianco I. Detection of α-globin gene disorders by a simple PCR methodology. Haematologica. 1996;81(5):387–96. 88. Sutton M, Bouhassi EE, Nagel RL. Polymerase Chain Reaction Amplification Applied to the determination of β-like globin gene cluster haplotypes. Am J Hematol. 1989;32(1):66–9. 89. Powars D., Hiti A. Sickle cell anemia. Beta S gene cluster haplotypes as genetic markers for severe disease expression. Am J Dis Child. 1993;147:1197–202. 90. Steinberg MH. Genetic modulation of cickle cell anemia. Proc Soc Exp Biol Med. 1995;209:1–13. 91. Ofori-Acquah SF, Lalloz MR, Serjeant G, Layton DM. Dominant influence of gamma-globin promoter polymorphisms on fetal haemoglobin expression in sickle cell disease. Cell Mol Biol. 2004;50:35–42. 92. Adekile AD, Kitundu MN, Gu LH, Lanclos KD, Adeodu OO, Huisman TH. Haplotypes in SS patients from Nigeria; characterization of one atypical beta S haplotype no. 19 (Benin) associated with elevated HB F and high G gamma levels. Ann Hematol. 1992;65:41–5. 93. Platt OS, Thorington BD, Brambilla DJ. Pain in sickle cell disease. Rates and risk factors. N Engl J Med. 1991;325:11–6. 94. Sebastiani P, Nolan VG, Baldwin CT, Abad-Grau MM, Wang L, Adewoye AH, et al. A network model to predict the risk of death in sickle cell disease. Blood. 2007;110(7):2727–35. 95. Adams RJ, Kutlar A, Mckie V, Carl E, Nichols FT, Liu JC, et al. Alpha thalassemia and stroke risk in sickle cell anemia. Am J Hematol. 1994;45:279– 82. 88 96. Abboud MR, Musallam KM. Sickle cell disease at the dawn of the molecular era. Hemoglobin. 2009;33(1):93–106. 97. Okpala I. Leukocyte adhesion and the pathophysiology of sickle cell disease. Curr Opin Hematol. 2006;13(1):40–4. 98. Canalli AA, Franco-Penteado CF, Saad ST, Conran N, Costa FF. Increased adhesive properties of neutrophils in sickle cell disease may be reversed by pharmacological nitric oxide donation. Haematologica. 2008; 99. Traina F, Saad STO. Complicações hepáticas na doença falciforme. Rev Bras Hematol Hemoter. 2007;29(3):299–303. 100. Naum FA. Alterations of the lipid profile in anemia. Rev Bras Hematol Hemoter. 2005;27(3):223–6. 101. Colella MP, Paula EV De, Machado-neto JA, Conran N, Annichino-bizzacchi JM, Costa FF, et al. Elevated hypercoagulability markers in hemoglobin SC disease. Haematologica. 2015;100(4):466–71. 102. Seixas MO, Rocha LC, Carvalho MB, Menezes JF, Lyra IM, Nascimento VML, et al. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease. Lipids Health Dis. 2010;9(91):1–9. 103. Steinberg MH. Predicting clinical severity in sickle cell anaemia. Br J Haematol. 2005;129:465–81. 104. Gualandro SFM, Fonseca HH, Yokomizo IK, Gualandro DM, Liliana M. Cohort study of adult patients with haemoglobin SC disease : clinical characteristics and predictors of mortality. Br J Haematol. 2015;1–7. 105. Camilo-araújo RF, Amancio OMS, Figueiredo MS, Cabanãs-pedro AC, Braga JAP. Molecular analysis and association with clinical and laboratory manifestations in children with sickle cell anemia. Rev Bras Hematol Hemoter. 2014;36(5):334–9. 106. Cardoso GL, Yukiko S, Takanashi L, Guerreiro JF. Inherited hemoglobin disorders in an Afro-Amazonian community : Saracura. Genet Mol Biol. 2012;35(3):553–6. 107. Nagel RL, Steinberg MH. Genetics of the βS gene: origins, genetic epidemiology, and epistasis in sickle cell anemia. Disord hemoglobin – genetics, pathophisiology, Clin Manag. 2001;711–55. 108. Rumaney MB, Ngo Bitoungui VJ, Vorster AA, Ramesar R, Kengne AP, Ngogang J, et al. The co-inheritance of alpha-thalassemia and sickle cell anemia is associated with better hematological indices and lower consultations rate in Cameroonian patients and could improve their survival. PLoS One. 2014;9(6):1–10. 109. Pandey S, Pandey S, Mishra RM, Sharma M, Saxena R. Genotypic influence of α -deletions on the phenotype of Indian sickle cell anemia patients. Korean J Hematol. 2011;46(3):192–5. 110. Pante-de-Sousa G, Mousinho-Ribeiro R de C, Guerreiro JF. Origin of the hemoglobin S gene in a northern Brazilian population: the combined effects of slave trade and internal migrations. Genet Mol Biol. 1998;21(4). 111. Pante-de-Sousa G, Mousinho-Ribeiro R de C, Santos EJM, Guerreiro JF. βglobin haplotypes analysis in Afro-Brazilians from the Amazon Region: evidence for a significant gene flow from Atlantic West Africa. Ann Hum Biol. 1999;26(4):365–73. 112. Antwi-Boasiako C, Frimpong E, Ababio GK, Dzudzor B, Ekem I, Antwi DA. Sickle Cell Disease: Reappraisal of the role of foetal Haemoglobin levels in the frequency of Vaso-Occlusive Crisis. Ghana Med J. 2015;49(2):102–6. 89 113. Sobrinho EF de A, Saraiva JC de P, Silva JN, Silva APS, Lima RC. Retinal Sings in patients with sickle cell disease. Rev Bras Oftalmol. 2011;70(5):284–9. 114. Silva LB, Gonçalves RP, Martins MF. Estudo da associação entre os níveis de hemoglobina fetal e o prognóstico dos pacientes com anemia falciforme. Rev Bras Hematol Hemoter. 2009;31(6):417–20.
dc.rights.driver.fl_str_mv Atribuição-NãoComercial-SemDerivados 3.0 Brasil
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribuição-NãoComercial-SemDerivados 3.0 Brasil
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Estado do Amazonas
Brasil
UEA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS Á HEMATOLOGIA
publisher.none.fl_str_mv Universidade do Estado do Amazonas
Brasil
UEA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS Á HEMATOLOGIA
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade do Estado do Amazonas (UEA)
instname:Universidade do Estado do Amazonas (UEA)
instacron:UEA
instname_str Universidade do Estado do Amazonas (UEA)
instacron_str UEA
institution UEA
reponame_str Repositório Institucional da Universidade do Estado do Amazonas (UEA)
collection Repositório Institucional da Universidade do Estado do Amazonas (UEA)
repository.name.fl_str_mv Repositório Institucional da Universidade do Estado do Amazonas (UEA) - Universidade do Estado do Amazonas (UEA)
repository.mail.fl_str_mv bibliotecacentral@uea.edu.br
_version_ 1816701123686301696