Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciforme

Detalhes bibliográficos
Autor(a) principal: Almeida, Emerson Garcia de
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade do Estado do Amazonas (UEA)
Texto Completo: http://repositorioinstitucional.uea.edu.br//handle/riuea/2240
Resumo: Sickle cell disease (SCD) is a hereditary blood disorder cause by a point muta- tion in the β-globin chain of hemoglobin (HBB; glu(E)6 val(A); GAG- GTG; rs334). The hallmark abnormality of sickle cell anemia (SCA) is the polymerization of deoxygenated hemoglobin S and aggregation into fibers. This causes drastic change in hemoglobin solubility that leads to heterogeneities in cell shape and density, hemolysis, higher risk of infections and recurrent vaso-occlusive crisis (VOC) with pain, which result in chronic organ damage. Despite being a monogenic disease, patients with SCA have a substantial phenotypic variability. Several single nucleotide polymorphisms (SNPs) in cytokine and inflammasome genes could lead to functional alterations in the transcriptional regulation. Some SNPs in NLRP3 inflammasome could lead at increase of its production causing negative outcomes in diseases. Our study therefore aimed at evaluating SNPs IL-1ß, IL-18, NLRP1 and NLR3 genes frequency and their association with clinical severity in SCA patients. It’s a transversal-descriptive study involved 21 SCA patients and 50 age, sex and ethnicity-matched healthy individuals. The SNPs were identified by PCR-RFLP for IL-1ß (rs187238) and IL-18 (rs16944) genes. The SNPs were identified by Real Time PCR (qPCR) for NLRP1 (rs12150220; rs2670660) and NLRP3(rs10754558; rs35829419) inflammasome genes. Associations between these SNPs and the clinical severity profiles of patients with SCA were then determined. The SNP of NLRP1 and NLRP3 inflammasome genes was not associated with SCA patients. In the same way, The SNP of these inflammasome the SNP’s of IL-1ß and IL-18 genes was not associated with clinical severity in SCA patients. Thus, our work provides evidence that despite SCA being a chronic inflammatory disease, only genes polymorphisms are not enough to change the outcome of this disease.
id UEA_6137ccf97000aa922b05d12959cfffdf
oai_identifier_str oai:repositorioinstitucional:riuea/2240
network_acronym_str UEA
network_name_str Repositório Institucional da Universidade do Estado do Amazonas (UEA)
spelling Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciformeCharacterization of the polymorphisms of the NLRP1 and NLRP3 inflammasome receptor genes and of the interleukins il-1ß and il-18 and their relationship with the severity score in patients with sickle cell anemiaAnemia falciformeHematologiaHematologiaSickle cell disease (SCD) is a hereditary blood disorder cause by a point muta- tion in the β-globin chain of hemoglobin (HBB; glu(E)6 val(A); GAG- GTG; rs334). The hallmark abnormality of sickle cell anemia (SCA) is the polymerization of deoxygenated hemoglobin S and aggregation into fibers. This causes drastic change in hemoglobin solubility that leads to heterogeneities in cell shape and density, hemolysis, higher risk of infections and recurrent vaso-occlusive crisis (VOC) with pain, which result in chronic organ damage. Despite being a monogenic disease, patients with SCA have a substantial phenotypic variability. Several single nucleotide polymorphisms (SNPs) in cytokine and inflammasome genes could lead to functional alterations in the transcriptional regulation. Some SNPs in NLRP3 inflammasome could lead at increase of its production causing negative outcomes in diseases. Our study therefore aimed at evaluating SNPs IL-1ß, IL-18, NLRP1 and NLR3 genes frequency and their association with clinical severity in SCA patients. It’s a transversal-descriptive study involved 21 SCA patients and 50 age, sex and ethnicity-matched healthy individuals. The SNPs were identified by PCR-RFLP for IL-1ß (rs187238) and IL-18 (rs16944) genes. The SNPs were identified by Real Time PCR (qPCR) for NLRP1 (rs12150220; rs2670660) and NLRP3(rs10754558; rs35829419) inflammasome genes. Associations between these SNPs and the clinical severity profiles of patients with SCA were then determined. The SNP of NLRP1 and NLRP3 inflammasome genes was not associated with SCA patients. In the same way, The SNP of these inflammasome the SNP’s of IL-1ß and IL-18 genes was not associated with clinical severity in SCA patients. Thus, our work provides evidence that despite SCA being a chronic inflammatory disease, only genes polymorphisms are not enough to change the outcome of this disease.A anemia falciforme (A.F.) é uma doença hereditária causada por um ponto de mutação na cadeia da ß-globina que resulta na substituição do àcido glutâmico pela valina na posição 6 do gene (HBB; glu(E)6 val(A); GAG-GTG; rs334). A anormalidade símbolo da A.F. é a agregação e polimerização da hemoglobina S desoxigenada. Isto resulta numa drástica mudança na solubilidade da hemoglobina que leva assumir a forma de foice, responsável por crises vaso oclusivas recorrentes acompanhadas de dor, que resultam em lesões crônicas em órgãos e tecidos Apesar de ser uma doença monogênica, portadores de anemia falciforme tem uma substancial variedade fenotípica no qual indivíduos com o mesmo genótipos apresentam diferentes graus de gravidade. Vários polimorfismos de nucleotídeo único (SNPs) nos genes que codificam as citocinas (IL) e os inflamossomas (NLRPs) podem levar a alterações funcionais na regulação transcripcional. Alguns SNPs do NLRP3 levam a produção excessiva de IL-1ß que pode causar impacto negativo em diversas doenças. Especificamente, IL-1ß E IL-18 são importantes na resposta inflamatória aguda e seus SNPs tem sido considerados como preditores de prognóstico em varias condições inflamatórias. Nosso estudo tem como objetivo avaliar a frequência dos SNP’s no gene dos inflamossomas NLRP1 e NLRP3 e nos genes das IL-1ß e IL-18 e sua associação com os perfis clínicos de gravidade em indivíduos portadores de anemia falciforme. É um estudo descritivo transversal envolvendo 21 pacientes portadores de anemia falciforme (grupo de casos) e 50 indivíduos sadios (grupo de controles). Os SNPs dos genes das IL-1ß (rs187238) e IL-18 (rs16944) foram identificados pela técnica de RFLP-PCR. Os SNPS dos genes dos inflamossomas NLRP1 (rs12150220; rs2670660) e NLRP3(rs10754558; rs35829419) foram identificados pela técnica de PCR em tempo real (qPCR). A associação entre esse SNPs e os fenótipos de gravidade clínica dos indivíduos portadores de anemia falciforme foram determinados. Não houve associação dos polimorfismos dos genes dos inflamossomas NLRP1 e NLRP3 com indivíduos portadores de anemia falciforme em nosso grupo de estudo, assim como não houve associação desses com os polimorfismos dos genes das Interleucinas IL-1ß e IL-18 com os fenótipos de gravidades em indivíduos portadores de anemia falciforme. Em conjunto, os dados aqui apresentados constituem na afirmação de que apesar da anemia falciforme ser uma doença de caráter inflamatório crônico, só os polimorfismos de genes que influenciam na resposta imune não suficientes para alterar o curso da gravidade da apresentação clínica.Universidade do Estado do AmazonasBrasilPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS Á HEMATOLOGIAUEAPaula, Erich Vinicius dehttp://lattes.cnpq.br/0983518713985469Marie, Adriana Malheiro Allehttp://lattes.cnpq.br/2627415957053194Marie, Adriana Malheiro Allehttp://lattes.cnpq.br/2627415957053194Almeida, Emerson Garcia de2020-03-122020-03-12T14:14:05Z2017-11-262020-03-12T14:14:05Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorioinstitucional.uea.edu.br//handle/riuea/2240porHerrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. Yale J Biol Med [Internet]. Jan [cited 2016 Mar 1];74(3):179–84. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2588723&tool=pmcentrez &rendertype=abstract 2. SYDENSTRICKER VP. FURTHER OBSERVATIONS ON SICKLE CELL ANEMIA. JAMA J Am Med Assoc [Internet]. American Medical Association; 1924 Jul 5 [cited 2016 Apr 25];83(1):12. Available from: http://jama.jamanetwork.com/article.aspx?articleid=230711 3. Frenette PS, Atweh GF. Sickle cell disease: old discoveries, new concepts, and future promise. J Clin Invest [Internet]. 2007 Apr [cited 2015 Oct 10];117(4):850–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1838946&tool=pmcentrez &rendertype=abstract 4. Scriver JB, Waugh TR. STUDIES ON A CASE OF SICKLE-CELL ANAEMIA. Can Med Assoc J [Internet]. 1930 Sep [cited 2015 Nov 22];23(3):375–80. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=382053&tool=pmcentrez& rendertype=abstract 5. PAULING L. MOLECULAR DISEASE AND EVOLUTION. Bull N Y Acad Med [Internet]. 1964 May [cited 2016 Mar 6];40:334–42. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1750607&tool=pmcentrez &rendertype=abstract 6. Pauling L, Itano HA, Singer SJ, Wells IC. Sickle Cell Anemia, a Molecular Disease. Science (80- ) [Internet]. American Association for the Advancement of Science; 1949 Nov 25 [cited 2016 Apr 5];110(2865):543–8. Available from: http://science.sciencemag.org/content/110/2865/543.abstract 7. Neel J V. The Inheritance of Sickle Cell Anemia. Science [Internet]. American Association for the Advancement of Science; 1949 Jul 15 [cited 2015 Aug 20];110(2846):64–6. Available from: http://science.sciencemag.org/content/110/2846/64.abstract 8. Watson J, Starman AW, Bilello FP. THE SIGNIFICANCE OF THE PAUCITY OF SICKLE CELLS IN NEWBORN NEGRO INFANTS. Am J Med Sci [Internet]. 1948 Apr 1 [cited 2016 Apr 25];215(4):419–23. Available from: https://www.researchgate.net/publication/5740864_Watson_J_The_significance_of_the _paucity_of_sickle_cells_in_newborn_Negro_infants_Am_J_Med_Sci_215_419-423 9. Ingram VM. Abnormal human haemoglobins. Biochim Biophys Acta [Internet]. 1958 Jan [cited 2016 Apr 25];28:539–45. Available from: http://www.sciencedirect.com/science/article/pii/000630025890516X 10. Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Especializada. Doença Falciforme: condutas básicas para o tratamento [Internet]. 1o. Edição. Brasília: Ministério da Saúde, Secretaria de Atenção à Saúde. Departamento de Atenção Especializada; 2012 [cited 2017 Aug 12]. 64 p. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/doenca_falciforme_condutas_basicas.pdf 11. ROCHA HHG. Anemia Falciforme. 1o. Edição. Rio de Janeiro: Rubio; 2004. p. 72. 12. Guidelines for the control of haemoglobin disorders. Report of the VIth Annual Meeting of the WHO Working Group on Haemoglobinopathies, Cagliari, Sardinia, 8–9 April, 1989. Geneva, World Health Organization, 1989 (unpublished document WHO/HDP/WG/HA/89.2). 90 13. Naoun PC. Origem e Dispersão do Gene bS – Hemoglobinopatias [Internet]. 2010 [cited 2017 Aug 13]. Available from: http://hemoglobinopatias.com.br/origem-edispersao-do-gene-bs/ 14. Pante-de-Sousa G, Mousinho-Ribeiro R de C, Santos EJM dos, Zago MA, Guerreiro JF. Origin of the hemoglobin S gene in a northern Brazilian population: the combined effects of slave trade and internal migrations. Genet Mol Biol [Internet]. 1998 Dec [cited 2017 Aug 13];21(4):427–30. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415- 47571998000400001&lng=en&tlng=en 15. Ruiz MA. Anemia Falciforme. Objetivos e resultados no tratamento de uma doeça de saúde pública no Brasil. Rev Bras Hematol Hemoter. 2007 set; 29(3): 203-4. 16. Silva W dos S, Lastra A, Oliveira SF de, Klautau-Guimarães N, Grisolia CK. Avaliação da cobertura do programa de triagem neonatal de hemoglobinopatias em populações do Recôncavo Baiano, Brasil. Cad Saude Publica [Internet]. Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz; 2006 Dec [cited 2017 Aug 12];22(12):2561–6. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102- 311X2006001200006&lng=pt&tlng=pt 17. De Oliveira D, Rodrigues W, Calil M, Ferreira B, Pereira PM, Teresa M, et al. DIAGNÓSTICO HISTÓRICO DA TRIAGEM NEONATAL PARA DOENÇA FALCIFORME Historical diagnosis about neonatal screening for sickle cell disease. 2010;13(1):34–45. 18. Ramalho AS, Jorge RN, Oliveira JÁ, Pereira DA. Hemoglobina S em recém-nascidos brasileiros. J Pediatr. 1976;41:9-10. 19. Ramalho AS. As hemoglobinopatias hereditárias. Um problema de sáude pública no Brasil. Ed Soc Bras Genética, 1986. 20. Doença Falciforme [Internet]. [cited 2017 Aug 12]. Available from: http://portalsaude.saude.gov.br/index.php/o-ministerio/principal/secretarias/955-sasraiz/dahu-raiz/sangue-e-hemoderivados/l2-sangue-e-hemoderivados/13335-doencafalciforme 21. Paulo Cesar Naoum. Sickle cell disease: from the beginning until it was recognized as a public health disease. Rev Bras Hematol Hemoter [Internet]. 2011 [cited 2017 Aug 13];33(1). Available from: http://www.scielo.br/pdf/rbhh/v33n1/v33n1a06.pdf 22. Silva RB de P e, Ramalho AS, Cassorla RMS. A anemia falciforme como problema de Saúde Pública no Brasil. Rev Saude Publica [Internet]. Faculdade de Saúde Pública da Universidade de São Paulo; 1993 Feb [cited 2017 Aug 12];27(1):54–8. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034- 89101993000100009&lng=pt&tlng=pt 23. Schechter AN. Hemoglobin research and the origins of molecular medicine. Blood [Internet]. 2008 Nov 15 [cited 2015 Nov 12];112(10):3927–38. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2581994&tool=pmcentrez &rendertype=abstract 24. Neto G de G, Pitombeira M da S. Aspectos moleculares da anemia falciforme. 2003 [cited 2015 Nov 20]; Available from: http://www.scielo.br/pdf/jbpml/v39n1/v39n1a10.pdf 25. Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ. A review of the molecular genetics of the human alpha-globin gene cluster. Blood [Internet]. 1989 Apr [cited 2015 Nov 21];73(5):1081–104. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2649166 26. Claiborn K. David Weatherall wins the 2010 Lasker~Koshland Special Achievement 91 Award in Medical Research for advances in thalassemia. J Clin Invest [Internet]. American Society for Clinical Investigation; 2010 Oct 1 [cited 2015 Nov 21];120(10):3406–8. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947249/ 27. Forget BG. Molecular basis of hereditary persistence of fetal hemoglobin. Ann N Y Acad Sci [Internet]. 1998 Jun 30 [cited 2015 Nov 21];850:38–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9668525 28. Odièvre M-H, Verger E, Silva-Pinto AC, Elion J. Pathophysiological insights in sickle cell disease. Indian J Med Res [Internet]. 2011 Oct [cited 2016 Jan 24];134:532–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3237253&tool=pmcentrez &rendertype=abstract 29. Ferrone FA. Polymerization and sickle cell disease: a molecular view. Microcirculation [Internet]. 2004 Mar [cited 2016 Jan 25];11(2):115–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15280087 30. Stuart MJ, Nagel RL, Onwubalili J, Herrick J, Pauling L, Itano H, et al. Sickle-cell disease. Lancet [Internet]. Elsevier; 2004 Oct [cited 2016 Jul 10];364(9442):1343–60. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673604171924 31. Zago MA, Pinto ACS. Fisiopatologia das doenças falciformes: da mutação genética à insuficiência de múltiplos órgãos. Rev Bras Hematol Hemoter [Internet]. Associação Brasileira de Hematologia e Hemoterapia; 2007 Sep [cited 2016 Jan 25];29(3):207–14. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300003&lng=en&nrm=iso&tlng=pt 32. Sonati M de F, Costa FF. Genética das doenças hematológicas: as hemoglobinopatias hereditárias. J Pediatr (Rio J) [Internet]. Sociedade Brasileira de Pediatria; 2008 Aug [cited 2016 Jan 24];84(4):S40–51. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0021- 75572008000500007&lng=en&nrm=iso&tlng=pt 33. Schmid-Schönbein GW. The damaging potential of leukocyte activation in the microcirculation. Angiology [Internet]. 1993 Jan [cited 2016 Jan 27];44(1):45–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8380959 34. Lonergan GJ, Cline DB, Abbondanzo SL. Sickle cell anemia. Radiographics [Internet]. [cited 2016 Jun 25];21(4):971–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11452073 35. Steinberg MH. Management of sickle cell disease. N Engl J Med [Internet]. 1999 Apr 1 [cited 2016 Jul 10];340(13):1021–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10099145 36. Almeida A, Roberts I. Bone involvement in sickle cell disease. Br J Haematol [Internet]. 2005 May [cited 2016 Jul 10];129(4):482–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15877730 37. Angulo IL. Acidente vascular cerebral e outras complicações do sistema nervoso central nas doenças falciformes. Rev Bras Hematol Hemoter [Internet]. Associação Brasileira de Hematologia e Hemoterapia; 2007 Sep [cited 2016 Jun 27];29(3):262–7. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300013&lng=pt&nrm=iso&tlng=pt 38. Bruniera P. Crise de seqüestro esplênico na doença falciforme. Rev Bras Hematol Hemoter [Internet]. Associação Brasileira de Hematologia e Hemoterapia; 2007 Sep [cited 2016 Jul 10];29(3):259–61. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300012&lng=pt&nrm=iso&tlng=pt 92 39. Cople-Rodrigues LCLJORLMCCMAC dos S. Fisiopatologia da doença renal crônica em adultos com doença falciforme. Rev Hosp Univ Pedro Ernesto. Revista Hospital Universitário Pedro Ernesto; 2015;14(3):58–63. 40. Gualandro SFM, Fonseca GHH, Gualandro DM. Complicações cardiopulmonares das doenças falciformes. Rev Bras Hematol Hemoter [Internet]. 2007 Sep [cited 2016 Jun 27];29(3):291–8. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300020&lng=pt&nrm=iso&tlng=pt 41. Traina F, Saad STO. Complicações hepáticas na doença falciforme. Rev Bras Hematol Hemoter [Internet]. Associação Brasileira de Hematologia e Hemoterapia; 2007 Sep [cited 2016 Jun 27];29(3):299–303. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300021&lng=pt&nrm=iso&tlng=pt 42. Introdução – Doença Falciforme – Hemoglobinopatias [Internet]. [cited 2017 Aug 13]. Available from: http://hemoglobinopatias.com.br/introducao-doenca-falciforme/ 43. Kan YW, Dozy AM. Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci U S A [Internet]. National Academy of Sciences; 1978 Nov [cited 2017 Aug 14];75(11):5631–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/281713 44. Kan YW, Dozy AM. Evolution of the hemoglobin S and C genes in world populations. Science [Internet]. 1980 Jul 18 [cited 2017 Aug 14];209(4454):388–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7384810 45. Lapouméroulie C, Dunda O, Ducrocq R, Trabuchet G, Mony-Lobé M, Bodo JM, et al. A novel sickle cell mutation of yet another origin in Africa: the Cameroon type. Hum Genet [Internet]. 1992 May [cited 2017 Aug 14];89(3):333–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1376298 46. Sickle-Cell Anemia: A Look at Global Haplotype Distribution [Internet]. [cited 2017 Aug 14]. Available from: https://www.nature.com/scitable/topicpage/sickle-cellanemia-a-look-at-global-8756219 47. Figueiredo MS, Silva MC, Guerreiro JF, Souza GP, Pires AC, Zago MA. The heterogeneity of the beta s cluster haplotypes in Brazil. Gene Geogr [Internet]. 1994 Apr [cited 2017 Aug 14];8(1):7–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7619778 48. Zago MA, Figueiredo MS, Ogo SH. Bantu βs cluster haplotype predominates among Brazilian Blacks. Am J Phys Anthropol [Internet]. 1992 Jul [cited 2017 Aug 14];88(3):295–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1642317 49. Lemos Cardoso G, Farias Guerreiro J. African gene flow to north Brazil as revealed by HBB*S gene haplotype analysis. Am J Hum Biol [Internet]. 2006 Jan [cited 2017 Aug 14];18(1):93–8. Available from: http://doi.wiley.com/10.1002/ajhb.20467 50. Lyra IM, Gonçalves MS, Braga JAP, Gesteira M de F, Carvalho MH, Saad STO, et al. Clinical, hematological, and molecular characterization of sickle cell anemia pediatric patients from two different cities in Brazil. Cad Saude Publica [Internet]. [cited 2017 Aug 14];21(4):1287–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16021267 51. Gonçalves MS, Bomfim GC, Maciel E, Cerqueira I, Lyra I, Zanette A, et al. BetaShaplotypes in sickle cell anemia patients from Salvador, Bahia, Northeastern Brazil. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol [Internet]. 2003 Oct [cited 2017 Aug 14];36(10):1283–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14502357 52. Zago MA, Silva WA, Dalle B, Gualandro S, Hutz MH, Lapoumeroulie C, et al. 93 Atypical beta(s) haplotypes are generated by diverse genetic mechanisms. Am J Hematol [Internet]. 2000 Feb [cited 2017 Aug 14];63(2):79–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10629573 53. Figueiredo MS, Kerbauy J, Gonçalves MS, Arruda VR, Saad STO, Sonati MF, et al. Effect of α-thalassemia and β-globin gene cluster haplotypes on the hematological and clinical features of sickle-cell anemia in Brazil. Am J Hematol [Internet]. 1996 Oct [cited 2017 Aug 14];53(2):72–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8892730 54. Costa FF, Arruda VR, Gonçalves MG, Miranda SR, Carvalho MH, Sonati MF, et al. Beta S-gene-cluster haplotypes in sickle cell anemia patients from two regions of Brazil. Am J Hematol [Internet]. 1994 Jan [cited 2017 Aug 14];45(1):96–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8250018 55. Stuart MJ, Nagel RL. Sickle-cell disease. Lancet [Internet]. 2004 Oct [cited 2017 Aug 15];364(9442):1343–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15474138 56. Higgs DR, Aldridge BE, Lamb J, Clegg JB, Weatherall DJ, Hayes RJ, et al. The Interaction of Alpha-Thalassemia and Homozygous Sickle-Cell Disease. N Engl J Med [Internet]. 1982 Jun 17 [cited 2017 Aug 15];306(24):1441–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6176865 57. Lettre G. The search for genetic modifiers of disease severity in the βhemoglobinopathies. Cold Spring Harb Perspect Med [Internet]. 2012 Oct 1 [cited 2017 Aug 15];2(10):a015032–a015032. Available from: http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a015032 58. Joly P, Pondarré C, Bardel C, Francina A, Martin C. The alpha-globin genotype does not influence sickle cell disease severity in a retrospective cross-validation study of the pediatric severity score. Eur J Haematol [Internet]. 2012 Jan [cited 2017 Aug 15];88(1):61–7. Available from: http://doi.wiley.com/10.1111/j.1600- 0609.2011.01705.x 59. Solomou E, Kraniotis P, Kourakli A, Petsas T. Extent of silent cerebral infarcts in adult sickle-cell disease patients on magnetic resonance imaging: is there a correlation with the clinical severity of disease? Hematol Rep [Internet]. 2013 Jan 25 [cited 2017 Aug 15];5(1):8–12. Available from: http://www.pagepress.org/journals/index.php/hr/article/view/4495 60. Pearson SR, Alkon A, Treadwell M, Wolff B, Quirolo K, Boyce WT. Autonomic reactivity and clinical severity in children with sickle cell disease. Clin Auton Res [Internet]. 2005 Dec [cited 2017 Aug 15];15(6):400–7. Available from: http://link.springer.com/10.1007/s10286-005-0300-9 61. Joly P, Pondarré C, Bardel C, Francina A, Martin C. The alpha-globin genotype does not influence sickle cell disease severity in a retrospective cross-validation study of the pediatric severity score. Eur J Haematol [Internet]. 2012 Jan [cited 2017 Aug 15];88(1):61–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21910753 62. Cameron BF, Christian E, Lobel JS, Gaston MH. Evaluation of clinical severity in sickle cell disease. J Natl Med Assoc [Internet]. 1983 May [cited 2017 Aug 15];75(5):483–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6864827 63. van den Tweel XW, van der Lee JH, Heijboer H, Peters M, Fijnvandraat K. Development and validation of a pediatric severity index for sickle cell patients. Am J Hematol [Internet]. 2010 Aug 30 [cited 2017 Aug 15];85(10):746–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20806231 64. Sebastiani P, Nolan VG, Baldwin CT, Abad-Grau MM, Wang L, Adewoye AH, et al. A network model to predict the risk of death in sickle cell disease. Blood [Internet]. 94 2007 Oct 1 [cited 2017 Aug 15];110(7):2727–35. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2007-04-084921 65. Belini Junior E, Silva DGH, Torres L de S, Okumura JV, Lobo CL de C, BoniniDomingos CR. Severity of Brazilian sickle cell disease patients: severity scores and feasibility of the Bayesian network model use. Blood Cells Mol Dis [Internet]. 2015 Apr [cited 2017 Aug 15];54(4):321–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1079979615000315 66. Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol [Internet]. 2014 Jan [cited 2016 Mar 13];5:115. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4035012&tool=pmcentrez &rendertype=abstract 67. Lyoumi S, Puy H, Tamion F, Bogard C, Leplingard A, Scotté M, et al. Heme and acute inflammation role in vivo of heme in the hepatic expression of positive acute-phase reactants in rats. Eur J Biochem [Internet]. 1999 Apr [cited 2016 Jul 1];261(1):190–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10103050 68. Wagener FA, Feldman E, de Witte T, Abraham NG. Heme induces the expression of adhesion molecules ICAM-1, VCAM-1, and E selectin in vascular endothelial cells. Proc Soc Exp Biol Med [Internet]. 1997 Dec [cited 2016 Jul 2];216(3):456–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9402154 69. Graça-Souza A V, Arruda MAB, de Freitas MS, Barja-Fidalgo C, Oliveira PL. Neutrophil activation by heme: implications for inflammatory processes. Blood [Internet]. 2002 Jun 1 [cited 2016 Jul 2];99(11):4160–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12010821 70. Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood [Internet]. 2014 Jun 12 [cited 2016 Jul 2];123(24):3818–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24620350 71. Natarajan R, Fisher BJ, Fowler AA. Hypoxia inducible factor-1 modulates hemininduced IL-8 secretion in microvascular endothelium. Microvasc Res. 2007;73(3):163– 72. 72. Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med [Internet]. 2013 Jul 1 [cited 2016 Jul 2];210(7):1283–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23825232 73. Arruda MA, Rossi AG, de Freitas MS, Barja-Fidalgo C, Graça-Souza A V. Heme inhibits human neutrophil apoptosis: involvement of phosphoinositide 3-kinase, MAPK, and NF-kappaB. J Immunol [Internet]. 2004 Aug 1 [cited 2016 Jul 2];173(3):2023–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15265937 74. Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, et al. Characterization of heme as activator of Toll-like receptor 4. J Biol Chem [Internet]. 2007 Jul 13 [cited 2016 Jul 2];282(28):20221–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17502383 75. Chen M, Wang H, Chen W, Meng G. Regulation of adaptive immunity by the NLRP3 inflammasome. Int Immunopharmacol [Internet]. 2011 May [cited 2015 Jun 30];11(5):549–54. Available from: http://www.sciencedirect.com/science/article/pii/S1567576910003899 76. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell [Internet]. 2010 Mar 19 [cited 2014 Jul 10];140(6):805–20. Available from: http://www.sciencedirect.com/science/article/pii/S0092867410000231 77. Sutterwala FS, Ogura Y, Flavell RA. The inflammasome in pathogen recognition and inflammation. J Leukoc Biol [Internet]. 2007 Aug [cited 2016 Jul 2];82(2):259–64. 95 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17470531 78. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell [Internet]. 2010 Mar 19 [cited 2014 Jul 10];140(6):805–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20303872 79. Shi Z, Cai Z, Sanchez A, Zhang T, Wen S, Wang J, et al. A Novel Toll-like Receptor That Recognizes Vesicular Stomatitis Virus. J Biol Chem [Internet]. 2011 Feb 11 [cited 2017 Aug 23];286(6):4517–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21131352 80. Guo H, Callaway JB, Ting JP-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med [Internet]. 2015 Jun 29 [cited 2015 Jun 30];21(7):677–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26121197 81. Schwartz RS, Netea MG, Van Der Meer JWM. Mechanisms of Disease Immunodeficiency and Genetic Defects of Pattern-Recognition Receptors. N Engl J Med [Internet]. 2011 [cited 2017 Sep 7];364:60–70. Available from: http://www.iki.uniklinikum-jena.de/iki_media/Downloads/Netea+nejmra2011.pdf 82. Wagener FA, Eggert A, Boerman OC, Oyen WJ, Verhofstad A, Abraham NG, et al. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood [Internet]. 2001 Sep 15 [cited 2016 Jul 2];98(6):1802–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11535514 83. Gladwin MT, Ofori-Acquah SF. Erythroid DAMPs drive inflammation in SCD. Blood [Internet]. 2014 Jun 12 [cited 2016 Feb 28];123(24):3689–90. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4055918&tool=pmcentrez &rendertype=abstract 84. Davis BK, Wen H, Ting JP-Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol [Internet]. 2011 [cited 2016 Jul 2];29:707–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21219188 85. Miao EA, Rajan J V, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev [Internet]. 2011 Sep [cited 2016 Jul 2];243(1):206–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21884178 86. Lamkanfi M, Vande Walle L, Kanneganti T-D. Deregulated inflammasome signaling in disease. Immunol Rev [Internet]. 2011 Sep [cited 2016 Jul 2];243(1):163–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21884175 87. Shaw PJ, McDermott MF, Kanneganti T-D. Inflammasomes and autoimmunity. Trends Mol Med [Internet]. 2011 Mar [cited 2016 Mar 30];17(2):57–64. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3057120&tool=pmcentrez &rendertype=abstract 88. Yang C-S, Shin D-M, Jo E-K. The Role of NLR-related Protein 3 Inflammasome in Host Defense and Inflammatory Diseases. Int Neurourol J [Internet]. 2012 Mar [cited 2016 Feb 23];16(1):2–12. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3321399&tool=pmcentrez &rendertype=abstract 89. Lamkanfi M, Kanneganti T-D. Nlrp3: An immune sensor of cellular stress and infection. Int J Biochem Cell Biol. 2010;42(6):792–5. 90. Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood [Internet]. 2014 Jan 16 [cited 2016 Jul 3];123(3):377– 90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24277079 91. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell [Internet]. 2002 Aug [cited 2017 Sep 11];10(2):417–26. Available from: 96 http://www.ncbi.nlm.nih.gov/pubmed/12191486 92. Dowling JK, O’Neill LAJ. Biochemical regulation of the inflammasome. Crit Rev Biochem Mol Biol [Internet]. 2012 Sep [cited 2015 Jun 30];47(5):424–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22681257 93. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, et al. Inflammasome Components NALP 1 and 3 Show Distinct but Separate Expression Profiles in Human Tissues Suggesting a Site-specific Role in the Inflammatory Response. J Histochem Cytochem [Internet]. 2007 [cited 2017 Sep 11];55:443–52. Available from: http://journals.sagepub.com/doi/pdf/10.1369/jhc.6A7101.2006 94. Faustin B, Lartigue L, Bruey J-M, Luciano F, Sergienko E, Bailly-Maitre B, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell [Internet]. 2007 Mar 9 [cited 2017 Sep 11];25(5):713–24. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276507000780 95. Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet [Internet]. 2006 Feb 22 [cited 2017 Sep 11];38(2):240–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16429160 96. Petrilli V, Papin S, Tschopp J, Nunez G. The inflammasome. Curr Biol [Internet]. Elsevier; 2005 Aug 9 [cited 2017 Sep 11];15(15):R581. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16085473 97. Verma D, Lerm M, Blomgran Julinder R, Eriksson P, Söderkvist P, Särndahl E. Gene polymorphisms in the NALP3 inflammasome are associated with interleukin-1 production and severe inflammation: relation to common inflammatory diseases? Arthritis Rheum [Internet]. 2008 Mar [cited 2016 Feb 23];58(3):888–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18311798 98. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet [Internet]. 2001 Nov [cited 2016 Apr 3];29(3):301–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4322000&tool=pmcentrez &rendertype=abstract 99. Mathews RJ, Sprakes MB, McDermott MF. NOD-like receptors and inflammation. Arthritis Res Ther [Internet]. BioMed Central; 2008 [cited 2017 Sep 10];10(6):228. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19090963 100. Pontillo A, Oshiro TM, Girardelli M, Kamada AJ, Crovella S, Duarte AJS. Polymorphisms in inflammasome’ genes and susceptibility to HIV-1 infection. J Acquir Immune Defic Syndr [Internet]. 2012 Feb 1 [cited 2016 Jul 4];59(2):121–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22227487 101. Verma D, Särndahl E, Andersson H, Eriksson P, Fredrikson M, Jönsson J-I, et al. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1β and IL-18 production. PLoS One [Internet]. 2012 Jan [cited 2016 Feb 22];7(4):e34977. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3328489&tool=pmcentrez &rendertype=abstract 102. de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol [Internet]. 2014 Oct 16 [cited 2015 Oct 18];6(12):a016287–a016287. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25324215 103. Levandowski CB, Mailloux CM, Ferrara TM, Gowan K, Ben S, Jin Y, et al. NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1β processing via the NLRP1 inflammasome. Proc Natl Acad Sci U S A [Internet]. National Academy of Sciences; 2013 Feb 19 [cited 2017 Sep 12];110(8):2952–6. 97 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23382179 104. Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement [Internet]. 2015 Mar [cited 2016 Jul 11];11(3):332–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25984581 105. Singh PK, Ahmad MK, Kumar V, Hussain SR, Gupta R, Jain A, et al. Effects of interleukin-18 promoter (C607A and G137C) gene polymorphisms and their association with oral squamous cell carcinoma (OSCC) in northern India. Tumour Biol [Internet]. 2014 Dec [cited 2016 Jul 11];35(12):12275–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25398690 106. Tian M, Deng YY, Hou DR, Li W, Feng XL, Yu ZL. Association of IL-1, IL-18, and IL-33 gene polymorphisms with late-onset Alzheimer׳s disease in a Hunan Han Chinese population. Brain Res [Internet]. Elsevier; 2015 Jan [cited 2016 Jul 11];1596:136–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006899314015662 107. Folwaczny M, Glas J, Török H-P, Tonenchi L, Paschos E, Bauer B, et al. Polymorphisms of the interleukin-18 gene in periodontitis patients. J Clin Periodontol [Internet]. 2005 May [cited 2016 Jul 11];32(5):530–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15842270 108. Koziel MJ. Cytokines in viral hepatitis. Semin Liver Dis [Internet]. 1999 [cited 2016 Jul 11];19(2):157–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10422198 109. Ferreira S da C, Chachá SGF, Souza FF, Teixeira AC, Santana R de C, Deghaide NHS, et al. IL-18, TNF, and IFN-γ alleles and genotypes are associated with susceptibility to chronic hepatitis B infection and severity of liver injury. J Med Virol [Internet]. 2015 Oct [cited 2016 Jul 11];87(10):1689–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25952099 110. Bayley J-P, Ottenhoff THM, Verweij CL. Is there a future for TNF promoter polymorphisms? Genes Immun [Internet]. 2004 Aug [cited 2016 Jul 11];5(5):315–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14973548 111. Santos MLS, Reis EC, Bricher PN, Sousa TN, Brito CFA, Lacerda MVG, et al. Contribution of inflammasome genetics in Plasmodium vivax malaria. Infect Genet Evol [Internet]. Elsevier; 2016 Jun [cited 2016 Jul 11];40:162–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1567134816300697 112. Zhang W-H, Wang X-L, Zhou J, An L-Z, Xie X-D. Association of interleukin-1B (IL1B) gene polymorphisms with risk of gastric cancer in Chinese population. Cytokine. 2005;30(6):378–81. 113. Qian N, Chen X, Han S, Qiang F, Jin G, Zhou X, et al. Circulating IL-1beta levels, polymorphisms of IL-1B, and risk of cervical cancer in Chinese women. J Cancer Res Clin Oncol [Internet]. 2010 May [cited 2016 Jul 11];136(5):709–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19904560 114. Griffin WST, Liu L, Li Y, Mrak RE, Barger SW. Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation [Internet]. BioMed Central; 2006 [cited 2016 Jul 11];3(1):5. Available from: http://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-3-5 115. Karra VK, Gumma PK, Chowdhury SJ, Ruttala R, Polipalli SK, Chakravarti A, et al. IL-18 polymorphisms in hepatitis B virus related liver disease. Cytokine. 2015;73(2):277–82. 116. Tsai H-T, Hsin C-H, Hsieh Y-H, Tang C-H, Yang S-F, Lin C-W, et al. Impact of interleukin-18 polymorphisms -607A/C and -137G/C on oral cancer occurrence and clinical progression. PLoS One [Internet]. 2013 [cited 2016 Jul 11];8(12):e83572. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24349532 98 117. Vicari P, Adegoke SA, Mazzotti DR, Cançado RD, Nogutti MAE, Figueiredo MS. Interleukin-1β and interleukin-6 gene polymorphisms are associated with manifestations of sickle cell anemia. Blood Cells Mol Dis [Internet]. 2015 Mar [cited 2017 Sep 14];54(3):244–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1079979614001600 118. Cesar P. Caracterização Clínica e Demográfica de Doentes com Doença Falciforme Acompanhados na Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas - FHEMOAM. Diss apresentada ao Programa Pós- Grad em Ciências Apl à Hematol da Univ do Estado do Amaz como requisito para a obtenção do Tit Mestre em Ciências Apl a Hematol. 2017; 119. Diretrizes e Normas Regulamentadoras de Pesquisa Envolvendo Seres Humanos.Resolução no 196 do Conselho Nacional de Saúde, 1996. [cited 2017 Sep 17]; Available from: http://www.uricer.edu.br/cep/arquivos/informativos/normas.pdf 120. Vilas-Boas W, Antônio B, Cerqueira V, Pitanga TN, Oliveira Seixas M, Menezes J, et al. Sickle cell disease: Only one road, but different pathways for inflammation. Adv Biosci Biotechnol [Internet]. 2012 [cited 2017 Sep 14];3:538–50. Available from: http://dx.doi.org/10.4236/abb.2012.324071 121. Pitanga TN, Vilas-Boas W, Cerqueira BAV, Seixas MO, Barbosa CG, Adorno EV, et al. Cytokine profiles in sickle cell anemia: Pathways to be unraveled. Adv Biosci Biotechnol [Internet]. Scientific Research Publishing; 2013 [cited 2017 Sep 14];4(7):6– 12. Available from: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/abb.2013.47A1002 122. Chi DZ, Chen J, Huang DP. Influence of interleukin-1β and interleukin-6 gene polymorphisms on the development of acute pancreatitis. Genet Mol Res [Internet]. 2015 Feb 3 [cited 2017 Sep 14];14(1):975–80. Available from: http://www.funpecrp.com.br/gmr/year2015/vol14-1/pdf/gmr4700.pdf 123. El-Omar EM, Carrington M, Chow W-H, McColl KEL, Bream JH, Young HA, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature [Internet]. 2000 Mar 23 [cited 2017 Sep 14];404(6776):398–402. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10746728 124. Sortica VA, Cunha MG, Ohnishi MDO, Souza JM, Ribeiro-Dos-Santos AKC, Santos NPC, et al. IL1B, IL4R, IL12RB1 and TNF gene polymorphisms are associated with Plasmodium vivax malaria in Brazil. Malar J [Internet]. 2012 Dec 7 [cited 2017 Sep 14];11(1):409. Available from: http://malariajournal.biomedcentral.com/articles/10.1186/1475-2875-11-409 125. Santos KN dos, Almeida MKC de, Fecury AA, Costa CA da, Martins LC. ANALYSIS OF POLYMORPHISMS IN THE INTERLEUKIN 18 GENE PROMOTOR (-137 G/C AND -607 C/A) IN PATIENTS INFECTED WITH HEPATITIS C VIRUS FROM THE BRAZILIAN AMAZON. Arq Gastroenterol [Internet]. 2015 Sep [cited 2017 Sep 14];52(3):222–7. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004- 28032015000300222&lng=en&tlng=en 126. Zhang Q, Fan HW, Zhang JZ, Wang YM, Xing HJ. NLRP3 rs35829419 polymorphism is associated with increased susceptibility to multiple diseases in humans. Genet Mol Res [Internet]. 2015 Jan [cited 2016 Apr 3];14(4):13968–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26535712 127. Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med [Internet]. 2007 Mar 22 [cited 2017 Sep 14];356(12):1216–25. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa061592 99 128. Damanhouri GA, Jarullah J, Marouf S, Hindawi SI, Mushtaq G, Kamal MA. Clinical biomarkers in sickle cell disease. Saudi J Biol Sci [Internet]. 2015 Jan [cited 2016 Feb 29];22(1):24–31. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4281636&tool=pmcentrez &rendertype=abstractAtribuição-NãoComercial-SemDerivados 3.0 Brasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade do Estado do Amazonas (UEA)instname:Universidade do Estado do Amazonas (UEA)instacron:UEA2020-03-12T14:14:06ZRepositório de Publicaçõeshttp://repositorioinstitucional.uea.edu.br/
dc.title.none.fl_str_mv Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciforme
Characterization of the polymorphisms of the NLRP1 and NLRP3 inflammasome receptor genes and of the interleukins il-1ß and il-18 and their relationship with the severity score in patients with sickle cell anemia
title Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciforme
spellingShingle Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciforme
Almeida, Emerson Garcia de
Anemia falciforme
Hematologia
Hematologia
title_short Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciforme
title_full Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciforme
title_fullStr Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciforme
title_full_unstemmed Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciforme
title_sort Caracterização dos polimorfismos dos genes dos receptores dos inflamassomas NLRP1 e NLRP3 e das interleucinas il-1ß e il-18 e suas relações com o escore de gravidade em portadores de anaemia falciforme
author Almeida, Emerson Garcia de
author_facet Almeida, Emerson Garcia de
author_role author
dc.contributor.none.fl_str_mv Paula, Erich Vinicius de
http://lattes.cnpq.br/0983518713985469
Marie, Adriana Malheiro Alle
http://lattes.cnpq.br/2627415957053194
Marie, Adriana Malheiro Alle
http://lattes.cnpq.br/2627415957053194
dc.contributor.author.fl_str_mv Almeida, Emerson Garcia de
dc.subject.por.fl_str_mv Anemia falciforme
Hematologia
Hematologia
topic Anemia falciforme
Hematologia
Hematologia
dc.description.none.fl_txt_mv Sickle cell disease (SCD) is a hereditary blood disorder cause by a point muta- tion in the β-globin chain of hemoglobin (HBB; glu(E)6 val(A); GAG- GTG; rs334). The hallmark abnormality of sickle cell anemia (SCA) is the polymerization of deoxygenated hemoglobin S and aggregation into fibers. This causes drastic change in hemoglobin solubility that leads to heterogeneities in cell shape and density, hemolysis, higher risk of infections and recurrent vaso-occlusive crisis (VOC) with pain, which result in chronic organ damage. Despite being a monogenic disease, patients with SCA have a substantial phenotypic variability. Several single nucleotide polymorphisms (SNPs) in cytokine and inflammasome genes could lead to functional alterations in the transcriptional regulation. Some SNPs in NLRP3 inflammasome could lead at increase of its production causing negative outcomes in diseases. Our study therefore aimed at evaluating SNPs IL-1ß, IL-18, NLRP1 and NLR3 genes frequency and their association with clinical severity in SCA patients. It’s a transversal-descriptive study involved 21 SCA patients and 50 age, sex and ethnicity-matched healthy individuals. The SNPs were identified by PCR-RFLP for IL-1ß (rs187238) and IL-18 (rs16944) genes. The SNPs were identified by Real Time PCR (qPCR) for NLRP1 (rs12150220; rs2670660) and NLRP3(rs10754558; rs35829419) inflammasome genes. Associations between these SNPs and the clinical severity profiles of patients with SCA were then determined. The SNP of NLRP1 and NLRP3 inflammasome genes was not associated with SCA patients. In the same way, The SNP of these inflammasome the SNP’s of IL-1ß and IL-18 genes was not associated with clinical severity in SCA patients. Thus, our work provides evidence that despite SCA being a chronic inflammatory disease, only genes polymorphisms are not enough to change the outcome of this disease.
A anemia falciforme (A.F.) é uma doença hereditária causada por um ponto de mutação na cadeia da ß-globina que resulta na substituição do àcido glutâmico pela valina na posição 6 do gene (HBB; glu(E)6 val(A); GAG-GTG; rs334). A anormalidade símbolo da A.F. é a agregação e polimerização da hemoglobina S desoxigenada. Isto resulta numa drástica mudança na solubilidade da hemoglobina que leva assumir a forma de foice, responsável por crises vaso oclusivas recorrentes acompanhadas de dor, que resultam em lesões crônicas em órgãos e tecidos Apesar de ser uma doença monogênica, portadores de anemia falciforme tem uma substancial variedade fenotípica no qual indivíduos com o mesmo genótipos apresentam diferentes graus de gravidade. Vários polimorfismos de nucleotídeo único (SNPs) nos genes que codificam as citocinas (IL) e os inflamossomas (NLRPs) podem levar a alterações funcionais na regulação transcripcional. Alguns SNPs do NLRP3 levam a produção excessiva de IL-1ß que pode causar impacto negativo em diversas doenças. Especificamente, IL-1ß E IL-18 são importantes na resposta inflamatória aguda e seus SNPs tem sido considerados como preditores de prognóstico em varias condições inflamatórias. Nosso estudo tem como objetivo avaliar a frequência dos SNP’s no gene dos inflamossomas NLRP1 e NLRP3 e nos genes das IL-1ß e IL-18 e sua associação com os perfis clínicos de gravidade em indivíduos portadores de anemia falciforme. É um estudo descritivo transversal envolvendo 21 pacientes portadores de anemia falciforme (grupo de casos) e 50 indivíduos sadios (grupo de controles). Os SNPs dos genes das IL-1ß (rs187238) e IL-18 (rs16944) foram identificados pela técnica de RFLP-PCR. Os SNPS dos genes dos inflamossomas NLRP1 (rs12150220; rs2670660) e NLRP3(rs10754558; rs35829419) foram identificados pela técnica de PCR em tempo real (qPCR). A associação entre esse SNPs e os fenótipos de gravidade clínica dos indivíduos portadores de anemia falciforme foram determinados. Não houve associação dos polimorfismos dos genes dos inflamossomas NLRP1 e NLRP3 com indivíduos portadores de anemia falciforme em nosso grupo de estudo, assim como não houve associação desses com os polimorfismos dos genes das Interleucinas IL-1ß e IL-18 com os fenótipos de gravidades em indivíduos portadores de anemia falciforme. Em conjunto, os dados aqui apresentados constituem na afirmação de que apesar da anemia falciforme ser uma doença de caráter inflamatório crônico, só os polimorfismos de genes que influenciam na resposta imune não suficientes para alterar o curso da gravidade da apresentação clínica.
description Sickle cell disease (SCD) is a hereditary blood disorder cause by a point muta- tion in the β-globin chain of hemoglobin (HBB; glu(E)6 val(A); GAG- GTG; rs334). The hallmark abnormality of sickle cell anemia (SCA) is the polymerization of deoxygenated hemoglobin S and aggregation into fibers. This causes drastic change in hemoglobin solubility that leads to heterogeneities in cell shape and density, hemolysis, higher risk of infections and recurrent vaso-occlusive crisis (VOC) with pain, which result in chronic organ damage. Despite being a monogenic disease, patients with SCA have a substantial phenotypic variability. Several single nucleotide polymorphisms (SNPs) in cytokine and inflammasome genes could lead to functional alterations in the transcriptional regulation. Some SNPs in NLRP3 inflammasome could lead at increase of its production causing negative outcomes in diseases. Our study therefore aimed at evaluating SNPs IL-1ß, IL-18, NLRP1 and NLR3 genes frequency and their association with clinical severity in SCA patients. It’s a transversal-descriptive study involved 21 SCA patients and 50 age, sex and ethnicity-matched healthy individuals. The SNPs were identified by PCR-RFLP for IL-1ß (rs187238) and IL-18 (rs16944) genes. The SNPs were identified by Real Time PCR (qPCR) for NLRP1 (rs12150220; rs2670660) and NLRP3(rs10754558; rs35829419) inflammasome genes. Associations between these SNPs and the clinical severity profiles of patients with SCA were then determined. The SNP of NLRP1 and NLRP3 inflammasome genes was not associated with SCA patients. In the same way, The SNP of these inflammasome the SNP’s of IL-1ß and IL-18 genes was not associated with clinical severity in SCA patients. Thus, our work provides evidence that despite SCA being a chronic inflammatory disease, only genes polymorphisms are not enough to change the outcome of this disease.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-26
2020-03-12
2020-03-12T14:14:05Z
2020-03-12T14:14:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://repositorioinstitucional.uea.edu.br//handle/riuea/2240
url http://repositorioinstitucional.uea.edu.br//handle/riuea/2240
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. Yale J Biol Med [Internet]. Jan [cited 2016 Mar 1];74(3):179–84. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2588723&tool=pmcentrez &rendertype=abstract 2. SYDENSTRICKER VP. FURTHER OBSERVATIONS ON SICKLE CELL ANEMIA. JAMA J Am Med Assoc [Internet]. American Medical Association; 1924 Jul 5 [cited 2016 Apr 25];83(1):12. Available from: http://jama.jamanetwork.com/article.aspx?articleid=230711 3. Frenette PS, Atweh GF. Sickle cell disease: old discoveries, new concepts, and future promise. J Clin Invest [Internet]. 2007 Apr [cited 2015 Oct 10];117(4):850–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1838946&tool=pmcentrez &rendertype=abstract 4. Scriver JB, Waugh TR. STUDIES ON A CASE OF SICKLE-CELL ANAEMIA. Can Med Assoc J [Internet]. 1930 Sep [cited 2015 Nov 22];23(3):375–80. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=382053&tool=pmcentrez& rendertype=abstract 5. PAULING L. MOLECULAR DISEASE AND EVOLUTION. Bull N Y Acad Med [Internet]. 1964 May [cited 2016 Mar 6];40:334–42. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1750607&tool=pmcentrez &rendertype=abstract 6. Pauling L, Itano HA, Singer SJ, Wells IC. Sickle Cell Anemia, a Molecular Disease. Science (80- ) [Internet]. American Association for the Advancement of Science; 1949 Nov 25 [cited 2016 Apr 5];110(2865):543–8. Available from: http://science.sciencemag.org/content/110/2865/543.abstract 7. Neel J V. The Inheritance of Sickle Cell Anemia. Science [Internet]. American Association for the Advancement of Science; 1949 Jul 15 [cited 2015 Aug 20];110(2846):64–6. Available from: http://science.sciencemag.org/content/110/2846/64.abstract 8. Watson J, Starman AW, Bilello FP. THE SIGNIFICANCE OF THE PAUCITY OF SICKLE CELLS IN NEWBORN NEGRO INFANTS. Am J Med Sci [Internet]. 1948 Apr 1 [cited 2016 Apr 25];215(4):419–23. Available from: https://www.researchgate.net/publication/5740864_Watson_J_The_significance_of_the _paucity_of_sickle_cells_in_newborn_Negro_infants_Am_J_Med_Sci_215_419-423 9. Ingram VM. Abnormal human haemoglobins. Biochim Biophys Acta [Internet]. 1958 Jan [cited 2016 Apr 25];28:539–45. Available from: http://www.sciencedirect.com/science/article/pii/000630025890516X 10. Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Especializada. Doença Falciforme: condutas básicas para o tratamento [Internet]. 1o. Edição. Brasília: Ministério da Saúde, Secretaria de Atenção à Saúde. Departamento de Atenção Especializada; 2012 [cited 2017 Aug 12]. 64 p. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/doenca_falciforme_condutas_basicas.pdf 11. ROCHA HHG. Anemia Falciforme. 1o. Edição. Rio de Janeiro: Rubio; 2004. p. 72. 12. Guidelines for the control of haemoglobin disorders. Report of the VIth Annual Meeting of the WHO Working Group on Haemoglobinopathies, Cagliari, Sardinia, 8–9 April, 1989. Geneva, World Health Organization, 1989 (unpublished document WHO/HDP/WG/HA/89.2). 90 13. Naoun PC. Origem e Dispersão do Gene bS – Hemoglobinopatias [Internet]. 2010 [cited 2017 Aug 13]. Available from: http://hemoglobinopatias.com.br/origem-edispersao-do-gene-bs/ 14. Pante-de-Sousa G, Mousinho-Ribeiro R de C, Santos EJM dos, Zago MA, Guerreiro JF. Origin of the hemoglobin S gene in a northern Brazilian population: the combined effects of slave trade and internal migrations. Genet Mol Biol [Internet]. 1998 Dec [cited 2017 Aug 13];21(4):427–30. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415- 47571998000400001&lng=en&tlng=en 15. Ruiz MA. Anemia Falciforme. Objetivos e resultados no tratamento de uma doeça de saúde pública no Brasil. Rev Bras Hematol Hemoter. 2007 set; 29(3): 203-4. 16. Silva W dos S, Lastra A, Oliveira SF de, Klautau-Guimarães N, Grisolia CK. Avaliação da cobertura do programa de triagem neonatal de hemoglobinopatias em populações do Recôncavo Baiano, Brasil. Cad Saude Publica [Internet]. Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz; 2006 Dec [cited 2017 Aug 12];22(12):2561–6. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102- 311X2006001200006&lng=pt&tlng=pt 17. De Oliveira D, Rodrigues W, Calil M, Ferreira B, Pereira PM, Teresa M, et al. DIAGNÓSTICO HISTÓRICO DA TRIAGEM NEONATAL PARA DOENÇA FALCIFORME Historical diagnosis about neonatal screening for sickle cell disease. 2010;13(1):34–45. 18. Ramalho AS, Jorge RN, Oliveira JÁ, Pereira DA. Hemoglobina S em recém-nascidos brasileiros. J Pediatr. 1976;41:9-10. 19. Ramalho AS. As hemoglobinopatias hereditárias. Um problema de sáude pública no Brasil. Ed Soc Bras Genética, 1986. 20. Doença Falciforme [Internet]. [cited 2017 Aug 12]. Available from: http://portalsaude.saude.gov.br/index.php/o-ministerio/principal/secretarias/955-sasraiz/dahu-raiz/sangue-e-hemoderivados/l2-sangue-e-hemoderivados/13335-doencafalciforme 21. Paulo Cesar Naoum. Sickle cell disease: from the beginning until it was recognized as a public health disease. Rev Bras Hematol Hemoter [Internet]. 2011 [cited 2017 Aug 13];33(1). Available from: http://www.scielo.br/pdf/rbhh/v33n1/v33n1a06.pdf 22. Silva RB de P e, Ramalho AS, Cassorla RMS. A anemia falciforme como problema de Saúde Pública no Brasil. Rev Saude Publica [Internet]. Faculdade de Saúde Pública da Universidade de São Paulo; 1993 Feb [cited 2017 Aug 12];27(1):54–8. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0034- 89101993000100009&lng=pt&tlng=pt 23. Schechter AN. Hemoglobin research and the origins of molecular medicine. Blood [Internet]. 2008 Nov 15 [cited 2015 Nov 12];112(10):3927–38. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2581994&tool=pmcentrez &rendertype=abstract 24. Neto G de G, Pitombeira M da S. Aspectos moleculares da anemia falciforme. 2003 [cited 2015 Nov 20]; Available from: http://www.scielo.br/pdf/jbpml/v39n1/v39n1a10.pdf 25. Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ. A review of the molecular genetics of the human alpha-globin gene cluster. Blood [Internet]. 1989 Apr [cited 2015 Nov 21];73(5):1081–104. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2649166 26. Claiborn K. David Weatherall wins the 2010 Lasker~Koshland Special Achievement 91 Award in Medical Research for advances in thalassemia. J Clin Invest [Internet]. American Society for Clinical Investigation; 2010 Oct 1 [cited 2015 Nov 21];120(10):3406–8. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947249/ 27. Forget BG. Molecular basis of hereditary persistence of fetal hemoglobin. Ann N Y Acad Sci [Internet]. 1998 Jun 30 [cited 2015 Nov 21];850:38–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9668525 28. Odièvre M-H, Verger E, Silva-Pinto AC, Elion J. Pathophysiological insights in sickle cell disease. Indian J Med Res [Internet]. 2011 Oct [cited 2016 Jan 24];134:532–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3237253&tool=pmcentrez &rendertype=abstract 29. Ferrone FA. Polymerization and sickle cell disease: a molecular view. Microcirculation [Internet]. 2004 Mar [cited 2016 Jan 25];11(2):115–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15280087 30. Stuart MJ, Nagel RL, Onwubalili J, Herrick J, Pauling L, Itano H, et al. Sickle-cell disease. Lancet [Internet]. Elsevier; 2004 Oct [cited 2016 Jul 10];364(9442):1343–60. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673604171924 31. Zago MA, Pinto ACS. Fisiopatologia das doenças falciformes: da mutação genética à insuficiência de múltiplos órgãos. Rev Bras Hematol Hemoter [Internet]. Associação Brasileira de Hematologia e Hemoterapia; 2007 Sep [cited 2016 Jan 25];29(3):207–14. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300003&lng=en&nrm=iso&tlng=pt 32. Sonati M de F, Costa FF. Genética das doenças hematológicas: as hemoglobinopatias hereditárias. J Pediatr (Rio J) [Internet]. Sociedade Brasileira de Pediatria; 2008 Aug [cited 2016 Jan 24];84(4):S40–51. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0021- 75572008000500007&lng=en&nrm=iso&tlng=pt 33. Schmid-Schönbein GW. The damaging potential of leukocyte activation in the microcirculation. Angiology [Internet]. 1993 Jan [cited 2016 Jan 27];44(1):45–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8380959 34. Lonergan GJ, Cline DB, Abbondanzo SL. Sickle cell anemia. Radiographics [Internet]. [cited 2016 Jun 25];21(4):971–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11452073 35. Steinberg MH. Management of sickle cell disease. N Engl J Med [Internet]. 1999 Apr 1 [cited 2016 Jul 10];340(13):1021–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10099145 36. Almeida A, Roberts I. Bone involvement in sickle cell disease. Br J Haematol [Internet]. 2005 May [cited 2016 Jul 10];129(4):482–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15877730 37. Angulo IL. Acidente vascular cerebral e outras complicações do sistema nervoso central nas doenças falciformes. Rev Bras Hematol Hemoter [Internet]. Associação Brasileira de Hematologia e Hemoterapia; 2007 Sep [cited 2016 Jun 27];29(3):262–7. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300013&lng=pt&nrm=iso&tlng=pt 38. Bruniera P. Crise de seqüestro esplênico na doença falciforme. Rev Bras Hematol Hemoter [Internet]. Associação Brasileira de Hematologia e Hemoterapia; 2007 Sep [cited 2016 Jul 10];29(3):259–61. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300012&lng=pt&nrm=iso&tlng=pt 92 39. Cople-Rodrigues LCLJORLMCCMAC dos S. Fisiopatologia da doença renal crônica em adultos com doença falciforme. Rev Hosp Univ Pedro Ernesto. Revista Hospital Universitário Pedro Ernesto; 2015;14(3):58–63. 40. Gualandro SFM, Fonseca GHH, Gualandro DM. Complicações cardiopulmonares das doenças falciformes. Rev Bras Hematol Hemoter [Internet]. 2007 Sep [cited 2016 Jun 27];29(3):291–8. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300020&lng=pt&nrm=iso&tlng=pt 41. Traina F, Saad STO. Complicações hepáticas na doença falciforme. Rev Bras Hematol Hemoter [Internet]. Associação Brasileira de Hematologia e Hemoterapia; 2007 Sep [cited 2016 Jun 27];29(3):299–303. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 84842007000300021&lng=pt&nrm=iso&tlng=pt 42. Introdução – Doença Falciforme – Hemoglobinopatias [Internet]. [cited 2017 Aug 13]. Available from: http://hemoglobinopatias.com.br/introducao-doenca-falciforme/ 43. Kan YW, Dozy AM. Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation. Proc Natl Acad Sci U S A [Internet]. National Academy of Sciences; 1978 Nov [cited 2017 Aug 14];75(11):5631–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/281713 44. Kan YW, Dozy AM. Evolution of the hemoglobin S and C genes in world populations. Science [Internet]. 1980 Jul 18 [cited 2017 Aug 14];209(4454):388–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7384810 45. Lapouméroulie C, Dunda O, Ducrocq R, Trabuchet G, Mony-Lobé M, Bodo JM, et al. A novel sickle cell mutation of yet another origin in Africa: the Cameroon type. Hum Genet [Internet]. 1992 May [cited 2017 Aug 14];89(3):333–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1376298 46. Sickle-Cell Anemia: A Look at Global Haplotype Distribution [Internet]. [cited 2017 Aug 14]. Available from: https://www.nature.com/scitable/topicpage/sickle-cellanemia-a-look-at-global-8756219 47. Figueiredo MS, Silva MC, Guerreiro JF, Souza GP, Pires AC, Zago MA. The heterogeneity of the beta s cluster haplotypes in Brazil. Gene Geogr [Internet]. 1994 Apr [cited 2017 Aug 14];8(1):7–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7619778 48. Zago MA, Figueiredo MS, Ogo SH. Bantu βs cluster haplotype predominates among Brazilian Blacks. Am J Phys Anthropol [Internet]. 1992 Jul [cited 2017 Aug 14];88(3):295–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1642317 49. Lemos Cardoso G, Farias Guerreiro J. African gene flow to north Brazil as revealed by HBB*S gene haplotype analysis. Am J Hum Biol [Internet]. 2006 Jan [cited 2017 Aug 14];18(1):93–8. Available from: http://doi.wiley.com/10.1002/ajhb.20467 50. Lyra IM, Gonçalves MS, Braga JAP, Gesteira M de F, Carvalho MH, Saad STO, et al. Clinical, hematological, and molecular characterization of sickle cell anemia pediatric patients from two different cities in Brazil. Cad Saude Publica [Internet]. [cited 2017 Aug 14];21(4):1287–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16021267 51. Gonçalves MS, Bomfim GC, Maciel E, Cerqueira I, Lyra I, Zanette A, et al. BetaShaplotypes in sickle cell anemia patients from Salvador, Bahia, Northeastern Brazil. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol [Internet]. 2003 Oct [cited 2017 Aug 14];36(10):1283–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14502357 52. Zago MA, Silva WA, Dalle B, Gualandro S, Hutz MH, Lapoumeroulie C, et al. 93 Atypical beta(s) haplotypes are generated by diverse genetic mechanisms. Am J Hematol [Internet]. 2000 Feb [cited 2017 Aug 14];63(2):79–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10629573 53. Figueiredo MS, Kerbauy J, Gonçalves MS, Arruda VR, Saad STO, Sonati MF, et al. Effect of α-thalassemia and β-globin gene cluster haplotypes on the hematological and clinical features of sickle-cell anemia in Brazil. Am J Hematol [Internet]. 1996 Oct [cited 2017 Aug 14];53(2):72–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8892730 54. Costa FF, Arruda VR, Gonçalves MG, Miranda SR, Carvalho MH, Sonati MF, et al. Beta S-gene-cluster haplotypes in sickle cell anemia patients from two regions of Brazil. Am J Hematol [Internet]. 1994 Jan [cited 2017 Aug 14];45(1):96–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8250018 55. Stuart MJ, Nagel RL. Sickle-cell disease. Lancet [Internet]. 2004 Oct [cited 2017 Aug 15];364(9442):1343–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15474138 56. Higgs DR, Aldridge BE, Lamb J, Clegg JB, Weatherall DJ, Hayes RJ, et al. The Interaction of Alpha-Thalassemia and Homozygous Sickle-Cell Disease. N Engl J Med [Internet]. 1982 Jun 17 [cited 2017 Aug 15];306(24):1441–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6176865 57. Lettre G. The search for genetic modifiers of disease severity in the βhemoglobinopathies. Cold Spring Harb Perspect Med [Internet]. 2012 Oct 1 [cited 2017 Aug 15];2(10):a015032–a015032. Available from: http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a015032 58. Joly P, Pondarré C, Bardel C, Francina A, Martin C. The alpha-globin genotype does not influence sickle cell disease severity in a retrospective cross-validation study of the pediatric severity score. Eur J Haematol [Internet]. 2012 Jan [cited 2017 Aug 15];88(1):61–7. Available from: http://doi.wiley.com/10.1111/j.1600- 0609.2011.01705.x 59. Solomou E, Kraniotis P, Kourakli A, Petsas T. Extent of silent cerebral infarcts in adult sickle-cell disease patients on magnetic resonance imaging: is there a correlation with the clinical severity of disease? Hematol Rep [Internet]. 2013 Jan 25 [cited 2017 Aug 15];5(1):8–12. Available from: http://www.pagepress.org/journals/index.php/hr/article/view/4495 60. Pearson SR, Alkon A, Treadwell M, Wolff B, Quirolo K, Boyce WT. Autonomic reactivity and clinical severity in children with sickle cell disease. Clin Auton Res [Internet]. 2005 Dec [cited 2017 Aug 15];15(6):400–7. Available from: http://link.springer.com/10.1007/s10286-005-0300-9 61. Joly P, Pondarré C, Bardel C, Francina A, Martin C. The alpha-globin genotype does not influence sickle cell disease severity in a retrospective cross-validation study of the pediatric severity score. Eur J Haematol [Internet]. 2012 Jan [cited 2017 Aug 15];88(1):61–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21910753 62. Cameron BF, Christian E, Lobel JS, Gaston MH. Evaluation of clinical severity in sickle cell disease. J Natl Med Assoc [Internet]. 1983 May [cited 2017 Aug 15];75(5):483–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6864827 63. van den Tweel XW, van der Lee JH, Heijboer H, Peters M, Fijnvandraat K. Development and validation of a pediatric severity index for sickle cell patients. Am J Hematol [Internet]. 2010 Aug 30 [cited 2017 Aug 15];85(10):746–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20806231 64. Sebastiani P, Nolan VG, Baldwin CT, Abad-Grau MM, Wang L, Adewoye AH, et al. A network model to predict the risk of death in sickle cell disease. Blood [Internet]. 94 2007 Oct 1 [cited 2017 Aug 15];110(7):2727–35. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2007-04-084921 65. Belini Junior E, Silva DGH, Torres L de S, Okumura JV, Lobo CL de C, BoniniDomingos CR. Severity of Brazilian sickle cell disease patients: severity scores and feasibility of the Bayesian network model use. Blood Cells Mol Dis [Internet]. 2015 Apr [cited 2017 Aug 15];54(4):321–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1079979615000315 66. Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol [Internet]. 2014 Jan [cited 2016 Mar 13];5:115. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4035012&tool=pmcentrez &rendertype=abstract 67. Lyoumi S, Puy H, Tamion F, Bogard C, Leplingard A, Scotté M, et al. Heme and acute inflammation role in vivo of heme in the hepatic expression of positive acute-phase reactants in rats. Eur J Biochem [Internet]. 1999 Apr [cited 2016 Jul 1];261(1):190–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10103050 68. Wagener FA, Feldman E, de Witte T, Abraham NG. Heme induces the expression of adhesion molecules ICAM-1, VCAM-1, and E selectin in vascular endothelial cells. Proc Soc Exp Biol Med [Internet]. 1997 Dec [cited 2016 Jul 2];216(3):456–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9402154 69. Graça-Souza A V, Arruda MAB, de Freitas MS, Barja-Fidalgo C, Oliveira PL. Neutrophil activation by heme: implications for inflammatory processes. Blood [Internet]. 2002 Jun 1 [cited 2016 Jul 2];99(11):4160–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12010821 70. Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood [Internet]. 2014 Jun 12 [cited 2016 Jul 2];123(24):3818–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24620350 71. Natarajan R, Fisher BJ, Fowler AA. Hypoxia inducible factor-1 modulates hemininduced IL-8 secretion in microvascular endothelium. Microvasc Res. 2007;73(3):163– 72. 72. Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med [Internet]. 2013 Jul 1 [cited 2016 Jul 2];210(7):1283–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23825232 73. Arruda MA, Rossi AG, de Freitas MS, Barja-Fidalgo C, Graça-Souza A V. Heme inhibits human neutrophil apoptosis: involvement of phosphoinositide 3-kinase, MAPK, and NF-kappaB. J Immunol [Internet]. 2004 Aug 1 [cited 2016 Jul 2];173(3):2023–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15265937 74. Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, et al. Characterization of heme as activator of Toll-like receptor 4. J Biol Chem [Internet]. 2007 Jul 13 [cited 2016 Jul 2];282(28):20221–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17502383 75. Chen M, Wang H, Chen W, Meng G. Regulation of adaptive immunity by the NLRP3 inflammasome. Int Immunopharmacol [Internet]. 2011 May [cited 2015 Jun 30];11(5):549–54. Available from: http://www.sciencedirect.com/science/article/pii/S1567576910003899 76. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell [Internet]. 2010 Mar 19 [cited 2014 Jul 10];140(6):805–20. Available from: http://www.sciencedirect.com/science/article/pii/S0092867410000231 77. Sutterwala FS, Ogura Y, Flavell RA. The inflammasome in pathogen recognition and inflammation. J Leukoc Biol [Internet]. 2007 Aug [cited 2016 Jul 2];82(2):259–64. 95 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17470531 78. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell [Internet]. 2010 Mar 19 [cited 2014 Jul 10];140(6):805–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20303872 79. Shi Z, Cai Z, Sanchez A, Zhang T, Wen S, Wang J, et al. A Novel Toll-like Receptor That Recognizes Vesicular Stomatitis Virus. J Biol Chem [Internet]. 2011 Feb 11 [cited 2017 Aug 23];286(6):4517–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21131352 80. Guo H, Callaway JB, Ting JP-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med [Internet]. 2015 Jun 29 [cited 2015 Jun 30];21(7):677–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26121197 81. Schwartz RS, Netea MG, Van Der Meer JWM. Mechanisms of Disease Immunodeficiency and Genetic Defects of Pattern-Recognition Receptors. N Engl J Med [Internet]. 2011 [cited 2017 Sep 7];364:60–70. Available from: http://www.iki.uniklinikum-jena.de/iki_media/Downloads/Netea+nejmra2011.pdf 82. Wagener FA, Eggert A, Boerman OC, Oyen WJ, Verhofstad A, Abraham NG, et al. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood [Internet]. 2001 Sep 15 [cited 2016 Jul 2];98(6):1802–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11535514 83. Gladwin MT, Ofori-Acquah SF. Erythroid DAMPs drive inflammation in SCD. Blood [Internet]. 2014 Jun 12 [cited 2016 Feb 28];123(24):3689–90. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4055918&tool=pmcentrez &rendertype=abstract 84. Davis BK, Wen H, Ting JP-Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol [Internet]. 2011 [cited 2016 Jul 2];29:707–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21219188 85. Miao EA, Rajan J V, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev [Internet]. 2011 Sep [cited 2016 Jul 2];243(1):206–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21884178 86. Lamkanfi M, Vande Walle L, Kanneganti T-D. Deregulated inflammasome signaling in disease. Immunol Rev [Internet]. 2011 Sep [cited 2016 Jul 2];243(1):163–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21884175 87. Shaw PJ, McDermott MF, Kanneganti T-D. Inflammasomes and autoimmunity. Trends Mol Med [Internet]. 2011 Mar [cited 2016 Mar 30];17(2):57–64. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3057120&tool=pmcentrez &rendertype=abstract 88. Yang C-S, Shin D-M, Jo E-K. The Role of NLR-related Protein 3 Inflammasome in Host Defense and Inflammatory Diseases. Int Neurourol J [Internet]. 2012 Mar [cited 2016 Feb 23];16(1):2–12. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3321399&tool=pmcentrez &rendertype=abstract 89. Lamkanfi M, Kanneganti T-D. Nlrp3: An immune sensor of cellular stress and infection. Int J Biochem Cell Biol. 2010;42(6):792–5. 90. Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood [Internet]. 2014 Jan 16 [cited 2016 Jul 3];123(3):377– 90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24277079 91. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell [Internet]. 2002 Aug [cited 2017 Sep 11];10(2):417–26. Available from: 96 http://www.ncbi.nlm.nih.gov/pubmed/12191486 92. Dowling JK, O’Neill LAJ. Biochemical regulation of the inflammasome. Crit Rev Biochem Mol Biol [Internet]. 2012 Sep [cited 2015 Jun 30];47(5):424–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22681257 93. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, et al. Inflammasome Components NALP 1 and 3 Show Distinct but Separate Expression Profiles in Human Tissues Suggesting a Site-specific Role in the Inflammatory Response. J Histochem Cytochem [Internet]. 2007 [cited 2017 Sep 11];55:443–52. Available from: http://journals.sagepub.com/doi/pdf/10.1369/jhc.6A7101.2006 94. Faustin B, Lartigue L, Bruey J-M, Luciano F, Sergienko E, Bailly-Maitre B, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell [Internet]. 2007 Mar 9 [cited 2017 Sep 11];25(5):713–24. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276507000780 95. Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet [Internet]. 2006 Feb 22 [cited 2017 Sep 11];38(2):240–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16429160 96. Petrilli V, Papin S, Tschopp J, Nunez G. The inflammasome. Curr Biol [Internet]. Elsevier; 2005 Aug 9 [cited 2017 Sep 11];15(15):R581. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16085473 97. Verma D, Lerm M, Blomgran Julinder R, Eriksson P, Söderkvist P, Särndahl E. Gene polymorphisms in the NALP3 inflammasome are associated with interleukin-1 production and severe inflammation: relation to common inflammatory diseases? Arthritis Rheum [Internet]. 2008 Mar [cited 2016 Feb 23];58(3):888–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18311798 98. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet [Internet]. 2001 Nov [cited 2016 Apr 3];29(3):301–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4322000&tool=pmcentrez &rendertype=abstract 99. Mathews RJ, Sprakes MB, McDermott MF. NOD-like receptors and inflammation. Arthritis Res Ther [Internet]. BioMed Central; 2008 [cited 2017 Sep 10];10(6):228. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19090963 100. Pontillo A, Oshiro TM, Girardelli M, Kamada AJ, Crovella S, Duarte AJS. Polymorphisms in inflammasome’ genes and susceptibility to HIV-1 infection. J Acquir Immune Defic Syndr [Internet]. 2012 Feb 1 [cited 2016 Jul 4];59(2):121–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22227487 101. Verma D, Särndahl E, Andersson H, Eriksson P, Fredrikson M, Jönsson J-I, et al. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1β and IL-18 production. PLoS One [Internet]. 2012 Jan [cited 2016 Feb 22];7(4):e34977. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3328489&tool=pmcentrez &rendertype=abstract 102. de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol [Internet]. 2014 Oct 16 [cited 2015 Oct 18];6(12):a016287–a016287. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25324215 103. Levandowski CB, Mailloux CM, Ferrara TM, Gowan K, Ben S, Jin Y, et al. NLRP1 haplotypes associated with vitiligo and autoimmunity increase interleukin-1β processing via the NLRP1 inflammasome. Proc Natl Acad Sci U S A [Internet]. National Academy of Sciences; 2013 Feb 19 [cited 2017 Sep 12];110(8):2952–6. 97 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23382179 104. Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement [Internet]. 2015 Mar [cited 2016 Jul 11];11(3):332–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25984581 105. Singh PK, Ahmad MK, Kumar V, Hussain SR, Gupta R, Jain A, et al. Effects of interleukin-18 promoter (C607A and G137C) gene polymorphisms and their association with oral squamous cell carcinoma (OSCC) in northern India. Tumour Biol [Internet]. 2014 Dec [cited 2016 Jul 11];35(12):12275–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25398690 106. Tian M, Deng YY, Hou DR, Li W, Feng XL, Yu ZL. Association of IL-1, IL-18, and IL-33 gene polymorphisms with late-onset Alzheimer׳s disease in a Hunan Han Chinese population. Brain Res [Internet]. Elsevier; 2015 Jan [cited 2016 Jul 11];1596:136–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006899314015662 107. Folwaczny M, Glas J, Török H-P, Tonenchi L, Paschos E, Bauer B, et al. Polymorphisms of the interleukin-18 gene in periodontitis patients. J Clin Periodontol [Internet]. 2005 May [cited 2016 Jul 11];32(5):530–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15842270 108. Koziel MJ. Cytokines in viral hepatitis. Semin Liver Dis [Internet]. 1999 [cited 2016 Jul 11];19(2):157–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10422198 109. Ferreira S da C, Chachá SGF, Souza FF, Teixeira AC, Santana R de C, Deghaide NHS, et al. IL-18, TNF, and IFN-γ alleles and genotypes are associated with susceptibility to chronic hepatitis B infection and severity of liver injury. J Med Virol [Internet]. 2015 Oct [cited 2016 Jul 11];87(10):1689–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25952099 110. Bayley J-P, Ottenhoff THM, Verweij CL. Is there a future for TNF promoter polymorphisms? Genes Immun [Internet]. 2004 Aug [cited 2016 Jul 11];5(5):315–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14973548 111. Santos MLS, Reis EC, Bricher PN, Sousa TN, Brito CFA, Lacerda MVG, et al. Contribution of inflammasome genetics in Plasmodium vivax malaria. Infect Genet Evol [Internet]. Elsevier; 2016 Jun [cited 2016 Jul 11];40:162–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1567134816300697 112. Zhang W-H, Wang X-L, Zhou J, An L-Z, Xie X-D. Association of interleukin-1B (IL1B) gene polymorphisms with risk of gastric cancer in Chinese population. Cytokine. 2005;30(6):37
dc.rights.driver.fl_str_mv Atribuição-NãoComercial-SemDerivados 3.0 Brasil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribuição-NãoComercial-SemDerivados 3.0 Brasil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Estado do Amazonas
Brasil
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS Á HEMATOLOGIA
UEA
publisher.none.fl_str_mv Universidade do Estado do Amazonas
Brasil
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS Á HEMATOLOGIA
UEA
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade do Estado do Amazonas (UEA)
instname:Universidade do Estado do Amazonas (UEA)
instacron:UEA
instname_str Universidade do Estado do Amazonas (UEA)
instacron_str UEA
institution UEA
reponame_str Repositório Institucional da Universidade do Estado do Amazonas (UEA)
collection Repositório Institucional da Universidade do Estado do Amazonas (UEA)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1724829749863251968