UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAIS

Detalhes bibliográficos
Autor(a) principal: Neto, Reynaldo D'Alessandro
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: por
Título da fonte: Boletim Cearense de Educação e História da Matemática (Online)
Texto Completo: https://revistas.uece.br/index.php/BOCEHM/article/view/2613
Resumo: Estes resultados parciais de uma pesquisa de doutorado do Programa de Pós-Graduação em Educação Matemática da UNESP – Rio Claro, insere-se na linha de pesquisa Relações entre História e Educação Matemática e tem como objetivo descrever a evolução histórica que culmina na concepção da Técnica da Transformada Integral Clássica, e as motivações que levaram a sistematização do seu modelo generalizado. As técnicas têm como foco resolver Equações Diferenciais Parciais (EDP) a princípio não tratáveis pelas teorias clássicas, como o conhecido método da separação de variáveis. Pretendemos fazer uma construção histórica, considerando o contexto do seu surgimento e desenvolvimento, passando pelas diversas modificações ao longo dos estudos e necessidades de se tornar uma técnica mais competitiva para a evolução do mundo tecnológico. Para atingir esse objetivo, faremos uma abordagem historiográfica que começa ao descrevermos algumas motivações históricas dos desenvolvimentos da Transformada Integral, e as principais ideias da Transformada Integral Finita por N.S. Koshlyakov. Além dos estudos detalhados realizados por G.A. Grinberg (1948), que generaliza os métodos de Koshlyakov, para o caso de mudança das propriedades do meio na direção da coordenada ao longo da qual a transformação é executada. E a aplicação de M.D. Mikhailov (1972), que propõe um núcleo de núcleo de processamento geral que unificou as várias transformações desenvolvidas até então, obtendo a solução para a equação da difusão linear em regiões finitas. Para assim, podermos entender esses movimentos que são precursores da proposta da Técnica da Transformada Integral Clássica (CITT – Classical Integral Transform Technique), de Özisik e Murray (1974). E, por fim, dos conceitos que surgiram com o formalismo da Técnica Transformada Integral Generalizada (GITT - Generalized Integral Transform Technique), proposta por Özisik e Mikhailov (1984). Nesses resultados parciais de pesquisa, apresentamos os passos descritos acima até a contribuição de Mikhailov (1972), que serão finalizados com a análise dos escritos que fundamentam a CITT e GITT.
id UECE-4_68acdbd401aa2fd37f12926d9814d571
oai_identifier_str oai:ojs.revistas.uece.br:article/2613
network_acronym_str UECE-4
network_name_str Boletim Cearense de Educação e História da Matemática (Online)
repository_id_str
spelling UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAISHistória da Matemática; Equação Diferencial Parcial - EDP; Transformada Integral; Técnica da Transformada Integral Clássica – (CITT); Técnica da Transformada Integral Generalizada – (GITT).Estes resultados parciais de uma pesquisa de doutorado do Programa de Pós-Graduação em Educação Matemática da UNESP – Rio Claro, insere-se na linha de pesquisa Relações entre História e Educação Matemática e tem como objetivo descrever a evolução histórica que culmina na concepção da Técnica da Transformada Integral Clássica, e as motivações que levaram a sistematização do seu modelo generalizado. As técnicas têm como foco resolver Equações Diferenciais Parciais (EDP) a princípio não tratáveis pelas teorias clássicas, como o conhecido método da separação de variáveis. Pretendemos fazer uma construção histórica, considerando o contexto do seu surgimento e desenvolvimento, passando pelas diversas modificações ao longo dos estudos e necessidades de se tornar uma técnica mais competitiva para a evolução do mundo tecnológico. Para atingir esse objetivo, faremos uma abordagem historiográfica que começa ao descrevermos algumas motivações históricas dos desenvolvimentos da Transformada Integral, e as principais ideias da Transformada Integral Finita por N.S. Koshlyakov. Além dos estudos detalhados realizados por G.A. Grinberg (1948), que generaliza os métodos de Koshlyakov, para o caso de mudança das propriedades do meio na direção da coordenada ao longo da qual a transformação é executada. E a aplicação de M.D. Mikhailov (1972), que propõe um núcleo de núcleo de processamento geral que unificou as várias transformações desenvolvidas até então, obtendo a solução para a equação da difusão linear em regiões finitas. Para assim, podermos entender esses movimentos que são precursores da proposta da Técnica da Transformada Integral Clássica (CITT – Classical Integral Transform Technique), de Özisik e Murray (1974). E, por fim, dos conceitos que surgiram com o formalismo da Técnica Transformada Integral Generalizada (GITT - Generalized Integral Transform Technique), proposta por Özisik e Mikhailov (1984). Nesses resultados parciais de pesquisa, apresentamos os passos descritos acima até a contribuição de Mikhailov (1972), que serão finalizados com a análise dos escritos que fundamentam a CITT e GITT.EdUECE2021-06-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.uece.br/index.php/BOCEHM/article/view/261310.30938/bocehm.v7i20.2613Boletim Cearense de Educação e História da Matemática; v. 7 n. 20 (2020): Número Especial - IV Seminário Cearense de História da Matemática; 80-922447-85042357-8661reponame:Boletim Cearense de Educação e História da Matemática (Online)instname:Universidade Estadual do Ceará (UECE)instacron:UECEporhttps://revistas.uece.br/index.php/BOCEHM/article/view/2613/3020Copyright (c) 2020 Boletim Cearense de Educação e História da Matemáticainfo:eu-repo/semantics/openAccessNeto, Reynaldo D'Alessandro2021-06-05T16:03:55Zoai:ojs.revistas.uece.br:article/2613Revistahttps://revistas.uece.br/index.php/BOCEHM/indexPUBhttps://revistas.uece.br/index.php/BOCEHM/oaigpehm@uece.br2447-85042357-8661opendoar:2023-01-12T15:16:42.037698Boletim Cearense de Educação e História da Matemática (Online) - Universidade Estadual do Ceará (UECE)true
dc.title.none.fl_str_mv UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAIS
title UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAIS
spellingShingle UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAIS
Neto, Reynaldo D'Alessandro
História da Matemática; Equação Diferencial Parcial - EDP; Transformada Integral; Técnica da Transformada Integral Clássica – (CITT); Técnica da Transformada Integral Generalizada – (GITT).
title_short UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAIS
title_full UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAIS
title_fullStr UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAIS
title_full_unstemmed UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAIS
title_sort UMA CONSTRUÇÃO HISTÓRICA DAS TÉCNICAS DA TRANSFORMADA INTEGRAL CLÁSSICA (CITT) E GENERALIZADA (GITT): ASPECTOS INICIAIS
author Neto, Reynaldo D'Alessandro
author_facet Neto, Reynaldo D'Alessandro
author_role author
dc.contributor.author.fl_str_mv Neto, Reynaldo D'Alessandro
dc.subject.por.fl_str_mv História da Matemática; Equação Diferencial Parcial - EDP; Transformada Integral; Técnica da Transformada Integral Clássica – (CITT); Técnica da Transformada Integral Generalizada – (GITT).
topic História da Matemática; Equação Diferencial Parcial - EDP; Transformada Integral; Técnica da Transformada Integral Clássica – (CITT); Técnica da Transformada Integral Generalizada – (GITT).
description Estes resultados parciais de uma pesquisa de doutorado do Programa de Pós-Graduação em Educação Matemática da UNESP – Rio Claro, insere-se na linha de pesquisa Relações entre História e Educação Matemática e tem como objetivo descrever a evolução histórica que culmina na concepção da Técnica da Transformada Integral Clássica, e as motivações que levaram a sistematização do seu modelo generalizado. As técnicas têm como foco resolver Equações Diferenciais Parciais (EDP) a princípio não tratáveis pelas teorias clássicas, como o conhecido método da separação de variáveis. Pretendemos fazer uma construção histórica, considerando o contexto do seu surgimento e desenvolvimento, passando pelas diversas modificações ao longo dos estudos e necessidades de se tornar uma técnica mais competitiva para a evolução do mundo tecnológico. Para atingir esse objetivo, faremos uma abordagem historiográfica que começa ao descrevermos algumas motivações históricas dos desenvolvimentos da Transformada Integral, e as principais ideias da Transformada Integral Finita por N.S. Koshlyakov. Além dos estudos detalhados realizados por G.A. Grinberg (1948), que generaliza os métodos de Koshlyakov, para o caso de mudança das propriedades do meio na direção da coordenada ao longo da qual a transformação é executada. E a aplicação de M.D. Mikhailov (1972), que propõe um núcleo de núcleo de processamento geral que unificou as várias transformações desenvolvidas até então, obtendo a solução para a equação da difusão linear em regiões finitas. Para assim, podermos entender esses movimentos que são precursores da proposta da Técnica da Transformada Integral Clássica (CITT – Classical Integral Transform Technique), de Özisik e Murray (1974). E, por fim, dos conceitos que surgiram com o formalismo da Técnica Transformada Integral Generalizada (GITT - Generalized Integral Transform Technique), proposta por Özisik e Mikhailov (1984). Nesses resultados parciais de pesquisa, apresentamos os passos descritos acima até a contribuição de Mikhailov (1972), que serão finalizados com a análise dos escritos que fundamentam a CITT e GITT.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-05
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.uece.br/index.php/BOCEHM/article/view/2613
10.30938/bocehm.v7i20.2613
url https://revistas.uece.br/index.php/BOCEHM/article/view/2613
identifier_str_mv 10.30938/bocehm.v7i20.2613
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.uece.br/index.php/BOCEHM/article/view/2613/3020
dc.rights.driver.fl_str_mv Copyright (c) 2020 Boletim Cearense de Educação e História da Matemática
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Boletim Cearense de Educação e História da Matemática
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv EdUECE
publisher.none.fl_str_mv EdUECE
dc.source.none.fl_str_mv Boletim Cearense de Educação e História da Matemática; v. 7 n. 20 (2020): Número Especial - IV Seminário Cearense de História da Matemática; 80-92
2447-8504
2357-8661
reponame:Boletim Cearense de Educação e História da Matemática (Online)
instname:Universidade Estadual do Ceará (UECE)
instacron:UECE
instname_str Universidade Estadual do Ceará (UECE)
instacron_str UECE
institution UECE
reponame_str Boletim Cearense de Educação e História da Matemática (Online)
collection Boletim Cearense de Educação e História da Matemática (Online)
repository.name.fl_str_mv Boletim Cearense de Educação e História da Matemática (Online) - Universidade Estadual do Ceará (UECE)
repository.mail.fl_str_mv gpehm@uece.br
_version_ 1797053997603880960