NÚMEROS REAIS: ASPECTOS HISTÓRICOS

Detalhes bibliográficos
Autor(a) principal: Lopes, Adrielle Cristine Mendello
Data de Publicação: 2018
Outros Autores: Sá, Pedro Franco de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Boletim Cearense de Educação e História da Matemática (Online)
Texto Completo: https://revistas.uece.br/index.php/BOCEHM/article/view/56
Resumo: Este artigo traz os resultados de uma pesquisa bibliográfica que teve por objetivo apresentar uma trajetória histórica dos números reais. As fontes de pesquisa foram livros de matemática e história da matemática bem como artigos científicos. O trabalho foi dividido nas seguintes seções: a descoberta dos números irracionais na Grécia, os infinitesimais, a aritmetização da análise e as teorias dos números reais. Os resultados indicaram que a história dos números reais iniciou na Grécia, com a descoberta de segmentos incomensuráveis pela escola de Pitágoras, fato que trouxe à tona os números irracionais. Por um longo tempo, o trabalho com os números irracionais foi evitado e somente 2500 anos depois foi possível estabelecer a construção axiomática dos números reais. O surgimento da expressão “número real” se deu com René Descartes (1596-1650) em 1637, quando este rejeitou as raízes de equações expressas por números imaginários e tal expressão ainda é utilizada até hoje. Com o desenvolvimento dos infinitesimais no fim do século XVII, muitas inconsistências nos fundamentos da matemática foram constatadas, mas estas passaram quase despercebidas devido à grande aplicabilidade dos métodos infinitesimais, fato muito explorado nos estudos matemáticos no século XVIII. Somente no século XIX, percebeu-se a necessidade de rigorizar a Análise, o que originou o movimento histórico conhecido como aritmetização da análise. Neste cenário, os matemáticos estavam cientes que de o progresso dependia de uma extensão do conceito de número. A própria ideia de função teve que ser esclarecida e noções como as de limite, continuidade, diferenciabilidade e integrabilidade tiveram de ser cuidadosa e claramente definidas. Ao final do século XIX, surgiram construções axiomáticas para os números reais que até então não estavam claramente fundamentados. As teorias dos números reais foram construídas pelo francês Charles Méray (1835-1911) e pelos alemães Karl Weierstrass (1815-1897), Richard Dedekind (1831-1916) e George Cantor (1845-1918).
id UECE-4_f49039883ff00742a0aa397d06ea6200
oai_identifier_str oai:ojs.revistas.uece.br:article/56
network_acronym_str UECE-4
network_name_str Boletim Cearense de Educação e História da Matemática (Online)
repository_id_str
spelling NÚMEROS REAIS: ASPECTOS HISTÓRICOSHistória da MatemáticaNúmeros irracionaisNúmeros reaisEste artigo traz os resultados de uma pesquisa bibliográfica que teve por objetivo apresentar uma trajetória histórica dos números reais. As fontes de pesquisa foram livros de matemática e história da matemática bem como artigos científicos. O trabalho foi dividido nas seguintes seções: a descoberta dos números irracionais na Grécia, os infinitesimais, a aritmetização da análise e as teorias dos números reais. Os resultados indicaram que a história dos números reais iniciou na Grécia, com a descoberta de segmentos incomensuráveis pela escola de Pitágoras, fato que trouxe à tona os números irracionais. Por um longo tempo, o trabalho com os números irracionais foi evitado e somente 2500 anos depois foi possível estabelecer a construção axiomática dos números reais. O surgimento da expressão “número real” se deu com René Descartes (1596-1650) em 1637, quando este rejeitou as raízes de equações expressas por números imaginários e tal expressão ainda é utilizada até hoje. Com o desenvolvimento dos infinitesimais no fim do século XVII, muitas inconsistências nos fundamentos da matemática foram constatadas, mas estas passaram quase despercebidas devido à grande aplicabilidade dos métodos infinitesimais, fato muito explorado nos estudos matemáticos no século XVIII. Somente no século XIX, percebeu-se a necessidade de rigorizar a Análise, o que originou o movimento histórico conhecido como aritmetização da análise. Neste cenário, os matemáticos estavam cientes que de o progresso dependia de uma extensão do conceito de número. A própria ideia de função teve que ser esclarecida e noções como as de limite, continuidade, diferenciabilidade e integrabilidade tiveram de ser cuidadosa e claramente definidas. Ao final do século XIX, surgiram construções axiomáticas para os números reais que até então não estavam claramente fundamentados. As teorias dos números reais foram construídas pelo francês Charles Méray (1835-1911) e pelos alemães Karl Weierstrass (1815-1897), Richard Dedekind (1831-1916) e George Cantor (1845-1918).EdUECE2018-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado pelos paresapplication/pdfhttps://revistas.uece.br/index.php/BOCEHM/article/view/56Boletim Cearense de Educação e História da Matemática; v. 3 n. 9 (2016): Boletim Cearense de Educação e História da Matemática; 79-902447-85042357-8661reponame:Boletim Cearense de Educação e História da Matemática (Online)instname:Universidade Estadual do Ceará (UECE)instacron:UECEporhttps://revistas.uece.br/index.php/BOCEHM/article/view/56/46Copyright (c) 2016 Boletim Cearense de Educação e História da Matemáticainfo:eu-repo/semantics/openAccessLopes, Adrielle Cristine MendelloSá, Pedro Franco de2018-06-23T21:19:14Zoai:ojs.revistas.uece.br:article/56Revistahttps://revistas.uece.br/index.php/BOCEHM/indexPUBhttps://revistas.uece.br/index.php/BOCEHM/oaigpehm@uece.br2447-85042357-8661opendoar:2023-01-12T15:16:38.173206Boletim Cearense de Educação e História da Matemática (Online) - Universidade Estadual do Ceará (UECE)true
dc.title.none.fl_str_mv NÚMEROS REAIS: ASPECTOS HISTÓRICOS
title NÚMEROS REAIS: ASPECTOS HISTÓRICOS
spellingShingle NÚMEROS REAIS: ASPECTOS HISTÓRICOS
Lopes, Adrielle Cristine Mendello
História da Matemática
Números irracionais
Números reais
title_short NÚMEROS REAIS: ASPECTOS HISTÓRICOS
title_full NÚMEROS REAIS: ASPECTOS HISTÓRICOS
title_fullStr NÚMEROS REAIS: ASPECTOS HISTÓRICOS
title_full_unstemmed NÚMEROS REAIS: ASPECTOS HISTÓRICOS
title_sort NÚMEROS REAIS: ASPECTOS HISTÓRICOS
author Lopes, Adrielle Cristine Mendello
author_facet Lopes, Adrielle Cristine Mendello
Sá, Pedro Franco de
author_role author
author2 Sá, Pedro Franco de
author2_role author
dc.contributor.author.fl_str_mv Lopes, Adrielle Cristine Mendello
Sá, Pedro Franco de
dc.subject.por.fl_str_mv História da Matemática
Números irracionais
Números reais
topic História da Matemática
Números irracionais
Números reais
description Este artigo traz os resultados de uma pesquisa bibliográfica que teve por objetivo apresentar uma trajetória histórica dos números reais. As fontes de pesquisa foram livros de matemática e história da matemática bem como artigos científicos. O trabalho foi dividido nas seguintes seções: a descoberta dos números irracionais na Grécia, os infinitesimais, a aritmetização da análise e as teorias dos números reais. Os resultados indicaram que a história dos números reais iniciou na Grécia, com a descoberta de segmentos incomensuráveis pela escola de Pitágoras, fato que trouxe à tona os números irracionais. Por um longo tempo, o trabalho com os números irracionais foi evitado e somente 2500 anos depois foi possível estabelecer a construção axiomática dos números reais. O surgimento da expressão “número real” se deu com René Descartes (1596-1650) em 1637, quando este rejeitou as raízes de equações expressas por números imaginários e tal expressão ainda é utilizada até hoje. Com o desenvolvimento dos infinitesimais no fim do século XVII, muitas inconsistências nos fundamentos da matemática foram constatadas, mas estas passaram quase despercebidas devido à grande aplicabilidade dos métodos infinitesimais, fato muito explorado nos estudos matemáticos no século XVIII. Somente no século XIX, percebeu-se a necessidade de rigorizar a Análise, o que originou o movimento histórico conhecido como aritmetização da análise. Neste cenário, os matemáticos estavam cientes que de o progresso dependia de uma extensão do conceito de número. A própria ideia de função teve que ser esclarecida e noções como as de limite, continuidade, diferenciabilidade e integrabilidade tiveram de ser cuidadosa e claramente definidas. Ao final do século XIX, surgiram construções axiomáticas para os números reais que até então não estavam claramente fundamentados. As teorias dos números reais foram construídas pelo francês Charles Méray (1835-1911) e pelos alemães Karl Weierstrass (1815-1897), Richard Dedekind (1831-1916) e George Cantor (1845-1918).
publishDate 2018
dc.date.none.fl_str_mv 2018-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.uece.br/index.php/BOCEHM/article/view/56
url https://revistas.uece.br/index.php/BOCEHM/article/view/56
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.uece.br/index.php/BOCEHM/article/view/56/46
dc.rights.driver.fl_str_mv Copyright (c) 2016 Boletim Cearense de Educação e História da Matemática
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 Boletim Cearense de Educação e História da Matemática
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv EdUECE
publisher.none.fl_str_mv EdUECE
dc.source.none.fl_str_mv Boletim Cearense de Educação e História da Matemática; v. 3 n. 9 (2016): Boletim Cearense de Educação e História da Matemática; 79-90
2447-8504
2357-8661
reponame:Boletim Cearense de Educação e História da Matemática (Online)
instname:Universidade Estadual do Ceará (UECE)
instacron:UECE
instname_str Universidade Estadual do Ceará (UECE)
instacron_str UECE
institution UECE
reponame_str Boletim Cearense de Educação e História da Matemática (Online)
collection Boletim Cearense de Educação e História da Matemática (Online)
repository.name.fl_str_mv Boletim Cearense de Educação e História da Matemática (Online) - Universidade Estadual do Ceará (UECE)
repository.mail.fl_str_mv gpehm@uece.br
_version_ 1797053997146701824