Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore

Detalhes bibliográficos
Autor(a) principal: Silva, Anderson de Carvalho
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UEFS
Texto Completo: http://localhost:8080/tede/handle/tede/293
Resumo: Eplingiella fruticosa (Salzm. Ex Benth.) Harley & JFB Pastore is an aromatic species, native, occurring in six states in northeastern Brazil (Bahia, Sergipe, Pernambuco, Paraiba, Rio Grande do Norte and Ceará). Popularly known as "alecrim de vaqueiro", is commonly found in street markets of the region and used to combat pain and seizures. Reviews in mice and in vitro studies show analgesic activity, vasodilating, cardioprotetiva, anti-inflammatory and larvicidal of its essential oil and of different types of the leaves extract. Recent studies show great variability in essential oil chemical composition of E. fruticosa, related to soil and climatic conditions and different plant organs. Thus, the species has great potential for exploration both agronomic, and by pharmaceutical companies. The aim of this study was to evaluate the vegetative propagation capacity and characterize previously Eplingiella genotypes, through morphological, agronomic, phytochemicals and molecular data. In Chapter I, two experiments were conducted: the first tested the effect of three substrates and the second evaluated five concentrations of IBA and three periods of cultivation. The design was a randomized block design with four replications. We evaluated survival percentage (% S), percentage of rooted cuttings (% EE), root length (CRE), number of shoots (NBE), dry mass of leaves (MSF), root dry weight (MSR) and total dry matter (MST). In Chapter II, twelve genotypes were collected, propagated vegetatively and transplanted. Twelve months after transplantation were assessed 12 quantitative traits, eight morphological and agronomic four. In Chapter III, the total DNA was extracted, then 20 primers were tested, of which nine were selected because they have better electrophoretic profiles agarose gel (2%). The binary matrix was computed in GEOCOMPAR II. It is estimated the diversity of the genetic structure parameters and the data were subjected to Bayesian analysis, and Neighbor-joining dendrogram and principal component analysis (PCA) based on matrix of Nei distances. And in Chapter IV, samples of 100g of leaves each repetition per genotype were used in the essential oil hydrodistillation in Clevenger type apparatus for three hours, quantifying the content. The identification of the compounds and their contents was performed by GC (FID) and GC / MS data 15 and the major compounds were used in diversity analysis. They have been made to cluster analysis and canonical variables, using as dissimilarity measure the Mahalanobis distance (D2). In the first experiment of Chapter I, significant differences were found for CRE, NBE, MSF, MSR and MST, with the best performance for the commercial substrate. In the second, positive effects have been identified both the addition of AIB as the cultivation time on the CRE variables, NBE, MSF and MSR, reaching maximum increment to the estimated concentration of 1.5 g L-1, at 60 days of cultivation. In Chapter II, there was significant variation by F test (p <0.01) for the CF features, LF, CBD, CBE, LP, and MFF MSF. The genotypes formed two groups for almost all variables, by Scott-Knott test (p <005), except for LP, which formed three. The EF002 and EF003 genotypes presented the highest levels for almost all variables. There was the formation of three groups for both UPGMA and for the canonical variables (CV). The characteristics that most contributed to the formation of groups were CBE, MFF and CF. The genotypes EF002, EF003, EF005 and EF012 stood out because they have higher genetic distances. In CHAPTER III, primers produced 131 polymorphic bands. The diversity index of Nei (Ne) ranged between 0.31 and 0.39, while Shannon (I) ranged between 0.33 and 0.48. The percentage coefficient of genetic differentiation (Gst) was 0.29. In AMOVA most of the variation was within populations (69%), while among populations was 27% and 4% among species, indicating a good genetic structure. The average value of Fst was 0.175, demonstrating intermediate differentiation between populations. The structure of the Bayesian analysis method revealed three possibilities for the formation of groups (K = 2; = 6; 8 =;), however, it presented many migrants and high level of mixing individuals. The dendrogram generated by the Neighbor-Joining method confirmed the formation of two groups, with good support for major clades (100%). PCA analysis in the first two axis explained 21.06% of the total variation among populations. Finally, in Chapter IV, the genotypes were classified into four clusters: 1 - EF001 genotypes, EF006, EF007, EF008, EF010, EF011 and EF012 with E-caryophyllene and bicyclogermacrene as major; 2 - EF002 and EF003 genotypes, with the majority same as the previous group, however, percentage with average about 30% higher; 3 - EF004 and EF005 genotypes that showed a greater production of E-caryophyllene; and 4 - with EF009 genotype, forming a single group to present α-pinene as balanced majority and percentage among the rest. This result was confirmed by canonical variables, which explained 76% of the variation. The bicyclogermacrene compounds, 1,8-cineol, α-copaene and spathulenol represented the most important variables for analysis.
id UEFS_a243f75ff764807edfd46f04d39bdcbb
oai_identifier_str oai:tede2.uefs.br:8080:tede/293
network_acronym_str UEFS
network_name_str Biblioteca Digital de Teses e Dissertações da UEFS
repository_id_str
spelling Oliveira, Lenaldo Muniz de81467869520http://lattes.cnpq.br/9072508524439547Silva, Anderson de Carvalho2016-01-26T21:56:33Z2015-06-29SILVA, Anderson de Carvalho. Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore. 2015. 123 f. Tese (Doutorado Acadêmico em Recursos Genéticos Vegetais)- Universidade Estadual de Feira de Santana, Feira de Santana, 2015.http://localhost:8080/tede/handle/tede/293Eplingiella fruticosa (Salzm. Ex Benth.) Harley & JFB Pastore is an aromatic species, native, occurring in six states in northeastern Brazil (Bahia, Sergipe, Pernambuco, Paraiba, Rio Grande do Norte and Ceará). Popularly known as "alecrim de vaqueiro", is commonly found in street markets of the region and used to combat pain and seizures. Reviews in mice and in vitro studies show analgesic activity, vasodilating, cardioprotetiva, anti-inflammatory and larvicidal of its essential oil and of different types of the leaves extract. Recent studies show great variability in essential oil chemical composition of E. fruticosa, related to soil and climatic conditions and different plant organs. Thus, the species has great potential for exploration both agronomic, and by pharmaceutical companies. The aim of this study was to evaluate the vegetative propagation capacity and characterize previously Eplingiella genotypes, through morphological, agronomic, phytochemicals and molecular data. In Chapter I, two experiments were conducted: the first tested the effect of three substrates and the second evaluated five concentrations of IBA and three periods of cultivation. The design was a randomized block design with four replications. We evaluated survival percentage (% S), percentage of rooted cuttings (% EE), root length (CRE), number of shoots (NBE), dry mass of leaves (MSF), root dry weight (MSR) and total dry matter (MST). In Chapter II, twelve genotypes were collected, propagated vegetatively and transplanted. Twelve months after transplantation were assessed 12 quantitative traits, eight morphological and agronomic four. In Chapter III, the total DNA was extracted, then 20 primers were tested, of which nine were selected because they have better electrophoretic profiles agarose gel (2%). The binary matrix was computed in GEOCOMPAR II. It is estimated the diversity of the genetic structure parameters and the data were subjected to Bayesian analysis, and Neighbor-joining dendrogram and principal component analysis (PCA) based on matrix of Nei distances. And in Chapter IV, samples of 100g of leaves each repetition per genotype were used in the essential oil hydrodistillation in Clevenger type apparatus for three hours, quantifying the content. The identification of the compounds and their contents was performed by GC (FID) and GC / MS data 15 and the major compounds were used in diversity analysis. They have been made to cluster analysis and canonical variables, using as dissimilarity measure the Mahalanobis distance (D2). In the first experiment of Chapter I, significant differences were found for CRE, NBE, MSF, MSR and MST, with the best performance for the commercial substrate. In the second, positive effects have been identified both the addition of AIB as the cultivation time on the CRE variables, NBE, MSF and MSR, reaching maximum increment to the estimated concentration of 1.5 g L-1, at 60 days of cultivation. In Chapter II, there was significant variation by F test (p <0.01) for the CF features, LF, CBD, CBE, LP, and MFF MSF. The genotypes formed two groups for almost all variables, by Scott-Knott test (p <005), except for LP, which formed three. The EF002 and EF003 genotypes presented the highest levels for almost all variables. There was the formation of three groups for both UPGMA and for the canonical variables (CV). The characteristics that most contributed to the formation of groups were CBE, MFF and CF. The genotypes EF002, EF003, EF005 and EF012 stood out because they have higher genetic distances. In CHAPTER III, primers produced 131 polymorphic bands. The diversity index of Nei (Ne) ranged between 0.31 and 0.39, while Shannon (I) ranged between 0.33 and 0.48. The percentage coefficient of genetic differentiation (Gst) was 0.29. In AMOVA most of the variation was within populations (69%), while among populations was 27% and 4% among species, indicating a good genetic structure. The average value of Fst was 0.175, demonstrating intermediate differentiation between populations. The structure of the Bayesian analysis method revealed three possibilities for the formation of groups (K = 2; = 6; 8 =;), however, it presented many migrants and high level of mixing individuals. The dendrogram generated by the Neighbor-Joining method confirmed the formation of two groups, with good support for major clades (100%). PCA analysis in the first two axis explained 21.06% of the total variation among populations. Finally, in Chapter IV, the genotypes were classified into four clusters: 1 - EF001 genotypes, EF006, EF007, EF008, EF010, EF011 and EF012 with E-caryophyllene and bicyclogermacrene as major; 2 - EF002 and EF003 genotypes, with the majority same as the previous group, however, percentage with average about 30% higher; 3 - EF004 and EF005 genotypes that showed a greater production of E-caryophyllene; and 4 - with EF009 genotype, forming a single group to present α-pinene as balanced majority and percentage among the rest. This result was confirmed by canonical variables, which explained 76% of the variation. The bicyclogermacrene compounds, 1,8-cineol, α-copaene and spathulenol represented the most important variables for analysis.Eplingiella fruticosa (Salzm. ex Benth.) Harley & J.F.B. Pastore é uma espécie aromática, nativa, que ocorre em seis estados do nordeste brasileiro (Bahia, Sergipe, Pernambuco, Paraíba, Rio Grande do Norte e Ceará). Popularmente conhecida como “alecrim de vaqueiro”, é comumente encontrada em feiras livres da região e utilizada no combate a dores e convulsões. Avaliações em camundongos e in vitro comprovam atividades analgésicas, vasodilatadora, cardioprotetiva, antinflamatória e larvicida do seu óleo essencial e de diferentes tipos de extrato de suas folhas. Estudos recentes apontam grande variabilidade na composição química do óleo essencial de E. fruticosa, relacionada às condições edafoclimáticas e aos diferentes órgãos vegetais. Sendo assim, a espécie apresenta grande potêncial de exploração tanto agronômica, quanto por indústrias farmacêuticas. O objetivo geral deste estudo foi avaliar a capacidade de propagação vegetativa e caracterizar, previamente, genótipos de E. fruticosa, por meio de dados morfológicos, agronômicos, fitoquímicos e moleculares. No CAPÍTULO I, foram conduzidos dois experimentos: o primeiro testou o efeito de três substratos e o segundo avaliou cinco concentrações de AIB e três períodos de cultivo. O delineamento foi em blocos casualizado, com quatro repetições. Avaliou-se percentagem de sobrevivência (%S), percentagem de estacas enraizadas (%EE), comprimento da raiz (CRE), número de brotações (NBE), massa seca de folhas (MSF), massa seca de raiz (MSR) e massa seca total (MST). No CAPÍTULO II, doze genótipos foram coletados, propagados vegetativamente e transplantados. Doze meses após o transplante foram avaliadas 12 características quantitativas, sendo oito morfológicase quatro agronômicas. No CAPÍTULO III, o DNA total foi extraído, em seguida 20 iniciadores foram testados, dos quais nove foram selecionados por apresentarem melhores perfis eletroforéticos em gel de agarose (2%). A matriz binária foi computada no GEOCOMPAR II. Estimou-se os parâmetros de diversidadee a estrutura genética os dados foram submetidos à análise Bayesiana, além de dendrograma Neighbor-joining e análise de componentes principais (PCA) com base na matriz de distâncias de Nei. E no CAPÍTULO IV, amostras de 100g de folhas de cada repetição por genótipo foram utilizadas na hidrodestilação do óleo essencial, em aparelho tipo clevenger, durante três horas, quantificando-se o teor. A identificação dos compostos e seus teores foi realizada por CG (DIC) e CG/EM e os dados de 15 compostos majoritários foram utilizados nas análises de diversidade. Foram procedidas análise de agrupamento e de variáveis canônicas, utilizando como medida de dissimilaridade a distância generalizada de Mahalanobis (D2).No primeiro experimento do CAPÍTULO I, foram verificadas diferenças significativas para CRE, NBE, MSF, MSR e MST, com melhor desempenho para o substrato comercial. No segundo, foram identificados efeitos positivos tanto da adição de AIB quanto dos tempos de cultivo sobre as variáveis CRE, NBE, MSF e MSR, atingindo incremento máximo com a concentração estimada de 1,5 g L-1, aos 60 dias de cultivo. No CAPÍTULO II, houve variação significativa, pelo teste de F (p<0,01), para as características CF, LF, CBD, CBE, LP, MFF e MSF. Os genótipos formaram dois grupos para quase todas as variáveis, pelo teste de Scott-Knott (p<005), exceto para LP, que formou três. Os genótipos EF002 e EF003 apresentaram as maiores médias para quase todas variáveis. Houve a formação de três grupos, tanto para UPGMA quanto para as variáveis canônicas (VC). As características que mais contribuíram para a formação dos grupos foram CBE, MFF e CF. Os genótipos EF002, EF003, EF005 e EF012 se destacaram por apresentarem maiores distâncias genéticas. No CAPÍTULO III, os iniciadores produziram 131 bandas polimórficas. O índice de diversidade de Nei (Ne) variou entre 0,31 e 0,39, enquanto Shannon (I) variou entre 0,33 e 0,48. O percentual do coeficiente de diferenciação genética (Gst) foi de 0,29. Na AMOVA a maior parte da variação ficou dentro das populações (69%), enquanto entre populações foi de 27% e entre espécies de 4%, indicando uma boa estruturação genética. O valor médio de Fst foi 0,175, demonstrando diferenciação intermediária entre as populações. As análises de estrutura pelo método Bayesiano revelou três possibilidades de formação de grupos (K=2;=6;=8;), no entanto, apresentou muitos indivíduos migrantes e elevado nível de miscigenação. O dendograma gerado pelo método de Neighbor-Joining confirmou a formação de dois grupos, com boa sustentação para os principais clados (100%). Na análise de PCA os dois primeiros axis explicaram 21,06% da variação total entre as populações. Por fim, no CAPÍTULO IV, os genótipos foram classificados em quatro clusters: 1 - genótipos EF001, EF006, EF007, EF008, EF010, EF011 e EF012, com E-cariofileno e biciclogermacreno como majoritários; 2 - genótipos EF002 e EF003, com os mesmos majoritários que o grupo anterior, no entanto, com percentuais médios cerca de 30% superiores; 3 - genótipos EF004 e EF005, que evidenciaram uma maior produção de E-cariofileno; e 4 - com genótipo EF009, formando um grupo isolado por apresentar α-pineno como majoritário e percentuais equilibrados entre os demais. Esse resultado foi confirmado pelas Variáveis Canônicas, que explicou 76% da variação. Os compostos biciclogermacreno, 1,8-cineol, α-copaeno e espatulenol representaram as variáveis de maior importância para a análise.Submitted by Ricardo Cedraz Duque Moliterno (ricardo.moliterno@uefs.br) on 2016-01-26T21:56:33Z No. of bitstreams: 1 TESE_Anderson_FINAL.pdf: 3427530 bytes, checksum: 027d12f66415d71dc327e860609665fe (MD5)Made available in DSpace on 2016-01-26T21:56:33Z (GMT). No. of bitstreams: 1 TESE_Anderson_FINAL.pdf: 3427530 bytes, checksum: 027d12f66415d71dc327e860609665fe (MD5) Previous issue date: 2015-06-29Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESFundação de Amparo à Pesquisa do Estado da Bahia - FAPEBapplication/pdfporUniversidade Estadual de Feira de SantanaDoutorado Acadêmico em Recursos Genéticos VegetaisUEFSBrasilDEPARTAMENTO DE CIÊNCIAS BIOLÓGICASHyptis fruticosaAlecrim-de-vaqueiroVariabilidadePlanta medicinalColeção de germoplasmaGenetic diversityMedicinal plant and germplasm collectionCIENCIAS AGRARIASCaracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastoreinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-32675240948481849496006006006006006005026123383450589282782842472690666391918028737277761048903590462550136975366-8233071094704392586info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UEFSinstname:Universidade Estadual de Feira de Santana (UEFS)instacron:UEFSORIGINALTESE_Anderson_FINAL.pdfTESE_Anderson_FINAL.pdfapplication/pdf3427530http://tede2.uefs.br:8080/bitstream/tede/293/2/TESE_Anderson_FINAL.pdf027d12f66415d71dc327e860609665feMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://tede2.uefs.br:8080/bitstream/tede/293/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/2932016-01-26 18:56:33.744oai:tede2.uefs.br:8080:tede/293Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.uefs.br:8080/PUBhttp://tede2.uefs.br:8080/oai/requestbcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.bropendoar:2016-01-26T21:56:33Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)false
dc.title.por.fl_str_mv Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore
title Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore
spellingShingle Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore
Silva, Anderson de Carvalho
Hyptis fruticosa
Alecrim-de-vaqueiro
Variabilidade
Planta medicinal
Coleção de germoplasma
Genetic diversity
Medicinal plant and germplasm collection
CIENCIAS AGRARIAS
title_short Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore
title_full Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore
title_fullStr Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore
title_full_unstemmed Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore
title_sort Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore
author Silva, Anderson de Carvalho
author_facet Silva, Anderson de Carvalho
author_role author
dc.contributor.advisor1.fl_str_mv Oliveira, Lenaldo Muniz de
dc.contributor.authorID.fl_str_mv 81467869520
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9072508524439547
dc.contributor.author.fl_str_mv Silva, Anderson de Carvalho
contributor_str_mv Oliveira, Lenaldo Muniz de
dc.subject.por.fl_str_mv Hyptis fruticosa
Alecrim-de-vaqueiro
Variabilidade
Planta medicinal
Coleção de germoplasma
topic Hyptis fruticosa
Alecrim-de-vaqueiro
Variabilidade
Planta medicinal
Coleção de germoplasma
Genetic diversity
Medicinal plant and germplasm collection
CIENCIAS AGRARIAS
dc.subject.eng.fl_str_mv Genetic diversity
Medicinal plant and germplasm collection
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS
description Eplingiella fruticosa (Salzm. Ex Benth.) Harley & JFB Pastore is an aromatic species, native, occurring in six states in northeastern Brazil (Bahia, Sergipe, Pernambuco, Paraiba, Rio Grande do Norte and Ceará). Popularly known as "alecrim de vaqueiro", is commonly found in street markets of the region and used to combat pain and seizures. Reviews in mice and in vitro studies show analgesic activity, vasodilating, cardioprotetiva, anti-inflammatory and larvicidal of its essential oil and of different types of the leaves extract. Recent studies show great variability in essential oil chemical composition of E. fruticosa, related to soil and climatic conditions and different plant organs. Thus, the species has great potential for exploration both agronomic, and by pharmaceutical companies. The aim of this study was to evaluate the vegetative propagation capacity and characterize previously Eplingiella genotypes, through morphological, agronomic, phytochemicals and molecular data. In Chapter I, two experiments were conducted: the first tested the effect of three substrates and the second evaluated five concentrations of IBA and three periods of cultivation. The design was a randomized block design with four replications. We evaluated survival percentage (% S), percentage of rooted cuttings (% EE), root length (CRE), number of shoots (NBE), dry mass of leaves (MSF), root dry weight (MSR) and total dry matter (MST). In Chapter II, twelve genotypes were collected, propagated vegetatively and transplanted. Twelve months after transplantation were assessed 12 quantitative traits, eight morphological and agronomic four. In Chapter III, the total DNA was extracted, then 20 primers were tested, of which nine were selected because they have better electrophoretic profiles agarose gel (2%). The binary matrix was computed in GEOCOMPAR II. It is estimated the diversity of the genetic structure parameters and the data were subjected to Bayesian analysis, and Neighbor-joining dendrogram and principal component analysis (PCA) based on matrix of Nei distances. And in Chapter IV, samples of 100g of leaves each repetition per genotype were used in the essential oil hydrodistillation in Clevenger type apparatus for three hours, quantifying the content. The identification of the compounds and their contents was performed by GC (FID) and GC / MS data 15 and the major compounds were used in diversity analysis. They have been made to cluster analysis and canonical variables, using as dissimilarity measure the Mahalanobis distance (D2). In the first experiment of Chapter I, significant differences were found for CRE, NBE, MSF, MSR and MST, with the best performance for the commercial substrate. In the second, positive effects have been identified both the addition of AIB as the cultivation time on the CRE variables, NBE, MSF and MSR, reaching maximum increment to the estimated concentration of 1.5 g L-1, at 60 days of cultivation. In Chapter II, there was significant variation by F test (p <0.01) for the CF features, LF, CBD, CBE, LP, and MFF MSF. The genotypes formed two groups for almost all variables, by Scott-Knott test (p <005), except for LP, which formed three. The EF002 and EF003 genotypes presented the highest levels for almost all variables. There was the formation of three groups for both UPGMA and for the canonical variables (CV). The characteristics that most contributed to the formation of groups were CBE, MFF and CF. The genotypes EF002, EF003, EF005 and EF012 stood out because they have higher genetic distances. In CHAPTER III, primers produced 131 polymorphic bands. The diversity index of Nei (Ne) ranged between 0.31 and 0.39, while Shannon (I) ranged between 0.33 and 0.48. The percentage coefficient of genetic differentiation (Gst) was 0.29. In AMOVA most of the variation was within populations (69%), while among populations was 27% and 4% among species, indicating a good genetic structure. The average value of Fst was 0.175, demonstrating intermediate differentiation between populations. The structure of the Bayesian analysis method revealed three possibilities for the formation of groups (K = 2; = 6; 8 =;), however, it presented many migrants and high level of mixing individuals. The dendrogram generated by the Neighbor-Joining method confirmed the formation of two groups, with good support for major clades (100%). PCA analysis in the first two axis explained 21.06% of the total variation among populations. Finally, in Chapter IV, the genotypes were classified into four clusters: 1 - EF001 genotypes, EF006, EF007, EF008, EF010, EF011 and EF012 with E-caryophyllene and bicyclogermacrene as major; 2 - EF002 and EF003 genotypes, with the majority same as the previous group, however, percentage with average about 30% higher; 3 - EF004 and EF005 genotypes that showed a greater production of E-caryophyllene; and 4 - with EF009 genotype, forming a single group to present α-pinene as balanced majority and percentage among the rest. This result was confirmed by canonical variables, which explained 76% of the variation. The bicyclogermacrene compounds, 1,8-cineol, α-copaene and spathulenol represented the most important variables for analysis.
publishDate 2015
dc.date.issued.fl_str_mv 2015-06-29
dc.date.accessioned.fl_str_mv 2016-01-26T21:56:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Anderson de Carvalho. Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore. 2015. 123 f. Tese (Doutorado Acadêmico em Recursos Genéticos Vegetais)- Universidade Estadual de Feira de Santana, Feira de Santana, 2015.
dc.identifier.uri.fl_str_mv http://localhost:8080/tede/handle/tede/293
identifier_str_mv SILVA, Anderson de Carvalho. Caracterização agronômica, molecular e fitoquímica de Eplingiella Harley & J.F.B. Pastore. 2015. 123 f. Tese (Doutorado Acadêmico em Recursos Genéticos Vegetais)- Universidade Estadual de Feira de Santana, Feira de Santana, 2015.
url http://localhost:8080/tede/handle/tede/293
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3267524094848184949
dc.relation.confidence.fl_str_mv 600
600
600
600
600
600
dc.relation.department.fl_str_mv 5026123383450589282
dc.relation.cnpq.fl_str_mv 7828424726906663919
dc.relation.sponsorship.fl_str_mv 1802873727776104890
3590462550136975366
-8233071094704392586
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.publisher.program.fl_str_mv Doutorado Acadêmico em Recursos Genéticos Vegetais
dc.publisher.initials.fl_str_mv UEFS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS
publisher.none.fl_str_mv Universidade Estadual de Feira de Santana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEFS
instname:Universidade Estadual de Feira de Santana (UEFS)
instacron:UEFS
instname_str Universidade Estadual de Feira de Santana (UEFS)
instacron_str UEFS
institution UEFS
reponame_str Biblioteca Digital de Teses e Dissertações da UEFS
collection Biblioteca Digital de Teses e Dissertações da UEFS
bitstream.url.fl_str_mv http://tede2.uefs.br:8080/bitstream/tede/293/2/TESE_Anderson_FINAL.pdf
http://tede2.uefs.br:8080/bitstream/tede/293/1/license.txt
bitstream.checksum.fl_str_mv 027d12f66415d71dc327e860609665fe
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEFS - Universidade Estadual de Feira de Santana (UEFS)
repository.mail.fl_str_mv bcuefs@uefs.br|| bcref@uefs.br||bcuefs@uefs.br
_version_ 1809288769944158208