Genetic diversity of tambaqui broodstocks in stock enhancement programs

Detalhes bibliográficos
Autor(a) principal: Moraes Neto, Americo
Data de Publicação: 2017
Outros Autores: Ayres, Denise Rocha, Streit Junior, Danilo Pedro, Lopera-Barrero, Nelson Mauricio, Ferraz Filho, Paulo Bahiense, Corrêa Filho, Ruy Alberto Caetano, Santana, Annaiza Braga Bignardi, Marciano, Caroline Michele Marinho, Murari, Pâmela Juliana Furlan, Povh, Jayme Aparecido
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Semina. Ciências Agrárias (Online)
Texto Completo: https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/26300
Resumo: Natural populations of tambaqui (Colossoma macropomum) have significantly decreased in recent decades especially due to human extraction activities. So that the environmental impact may be reduced, the restocking of fish and increase in fish production are enhanced. Genetic evaluations using molecular markers are essential for this purpose. Current study evaluates the genetic variability of two tambaqui broodstocks used in restocking programs. Sixty-five samples (33 samples from broodstock A and 32 samples from broodstock B) were collected. DNA was extracted from caudal fin samples, with the amplification of four microsatellite loci: Cm1A11 (EU685307) Cm1C8 (EU685308) Cm1F4 (EU685311) and Cm1H8 (EU685315). Fourteen alleles in the stock of broodstock A were produced, five alleles for Cm1A11 locus (230, 255, 260, 270 and 276 bp), three alleles Cm1C8 (239, 260, and 273 bp), two alleles Cm1F4 (211 and 245 bp), four alleles for Cm1H8 (275, 290, 320 and 331 bp) and two unique alleles were found for Cm1A11 loci (alleles 270 and 276 bp) and Cm1H8 (alleles 275 and 331 bp). In broodstock B, ten alleles were produced, the same alleles of the first stock except for alleles 270 and 276 bp in Cm1A11 locus and 275 and 331 bp in Cm1H8 locus. Broodstock A revealed low frequency alleles in Cm1A11 loci, Cm1C8, Cm1F4 and Cm1H8, whereas broodstock B had no locus with low allelic frequency. Loci Cm1A11, Cm1C8 and Cm1H8 exhibited significant deficit of heterozygotes in both broodstocks, revealing changes in Hardy-Weinberg equilibrium. Genetic diversity between stocks was 0.1120, whilst genetic similarity was 0.894, with FST rate = 0.05, and Nm = 3.93, indicating gene flow between the two broodstocks. Results show that broodstocks are genetically closely related, with no great genetic variability. Strategies such as a previous genetic analysis of breeding with its marking, use of a large Ne crossing between the most genetically divergent specimens, and the introduction of new genetic material to broodstocks may maximize genetic diversity and minimize inbreeding within the next generation.
id UEL-11_c9d2f9e2eea2ccc386f0bf90eccf6f0c
oai_identifier_str oai:ojs.pkp.sfu.ca:article/26300
network_acronym_str UEL-11
network_name_str Semina. Ciências Agrárias (Online)
repository_id_str
spelling Genetic diversity of tambaqui broodstocks in stock enhancement programsDiversidade genética de estoques de reprodutores de tambaqui utilizados em programas de repovoamentoColossoma macropomumGenetics conservationMolecular markersMicrosatellite.Colossoma macropomumConservação genéticaMarcadores molecularesMicrossatélite.Natural populations of tambaqui (Colossoma macropomum) have significantly decreased in recent decades especially due to human extraction activities. So that the environmental impact may be reduced, the restocking of fish and increase in fish production are enhanced. Genetic evaluations using molecular markers are essential for this purpose. Current study evaluates the genetic variability of two tambaqui broodstocks used in restocking programs. Sixty-five samples (33 samples from broodstock A and 32 samples from broodstock B) were collected. DNA was extracted from caudal fin samples, with the amplification of four microsatellite loci: Cm1A11 (EU685307) Cm1C8 (EU685308) Cm1F4 (EU685311) and Cm1H8 (EU685315). Fourteen alleles in the stock of broodstock A were produced, five alleles for Cm1A11 locus (230, 255, 260, 270 and 276 bp), three alleles Cm1C8 (239, 260, and 273 bp), two alleles Cm1F4 (211 and 245 bp), four alleles for Cm1H8 (275, 290, 320 and 331 bp) and two unique alleles were found for Cm1A11 loci (alleles 270 and 276 bp) and Cm1H8 (alleles 275 and 331 bp). In broodstock B, ten alleles were produced, the same alleles of the first stock except for alleles 270 and 276 bp in Cm1A11 locus and 275 and 331 bp in Cm1H8 locus. Broodstock A revealed low frequency alleles in Cm1A11 loci, Cm1C8, Cm1F4 and Cm1H8, whereas broodstock B had no locus with low allelic frequency. Loci Cm1A11, Cm1C8 and Cm1H8 exhibited significant deficit of heterozygotes in both broodstocks, revealing changes in Hardy-Weinberg equilibrium. Genetic diversity between stocks was 0.1120, whilst genetic similarity was 0.894, with FST rate = 0.05, and Nm = 3.93, indicating gene flow between the two broodstocks. Results show that broodstocks are genetically closely related, with no great genetic variability. Strategies such as a previous genetic analysis of breeding with its marking, use of a large Ne crossing between the most genetically divergent specimens, and the introduction of new genetic material to broodstocks may maximize genetic diversity and minimize inbreeding within the next generation.A população natural do tambaqui (Colossoma macropomum) está reduzindo significativamente nas últimas décadas devido às ações antrópicas, como o extrativismo. Para diminuir este impacto ambiental, o repovoamento de peixes e aumento da produção piscícola estão sendo realizados. Para tanto, avaliações genéticas por meio de marcadores moleculares são fundamentais. Desta forma, o objetivo deste trabalho foi avaliar a variabilidade genética de dois estoques de reprodutores de tambaqui utilizados em programas de repovoamento. Foram coletadas 65 amostras (33 amostras do estoque A e 32 amostras do estoque B). O DNA foi extraído de amostras da nadadeira caudal, com a amplificação de quatro loci microssatélite: Cm1A11 (EU685307), Cm1C8 (EU685308), Cm1F4 (EU685311) e Cm1H8 (EU685315). Foram produzidos 14 alelos no estoque de reprodutores A, cinco alelos para o locus Cm1A11 (230, 255, 260, 270 e 276 pb), três alelos para Cm1C8 (239, 260 e 273 pb), dois alelos para Cm1F4 (211 e 245 pb), quatro alelos para Cm1H8 (275, 290, 320 e 331 pb) e dois alelos exclusivos foram encontrados para os loci Cm1A11 (alelos 270 e 276 pb) e Cm1H8 (alelos 275 e 331 pb). Para o estoque de reprodutores B foram produzidos 10 alelos, os mesmos alelos do primeiro estoque, exceto para os alelos 270 e 276 pb no locus Cm1A11 e 275 e 331 pb no locus Cm1H8. No estoque de reprodutores A foi observado alelos de baixa frequência nos loci Cm1A11, Cm1C8, Cm1F4 e Cm1H8. Já o estoque de reprodutores B não apresentou locus com baixa frequência alélica. Os loci Cm1A11, Cm1C8 e Cm1H8 exibiram significativo défict de heterozigotos em ambos os estoques de reprodutores, indicando alteração no equilíbrio de Hardy-Weinberg. A divergência genética foi de 0,1120 entre os estoques, enquanto a similaridade genética foi de 0,894, com o valor de FST igual a 0,05, e o Nm igual a 3,93 indicando fluxo gênico entre os dois estoques de reprodutores. Os resultados obtidos revelam que os estoques de reprodutores estão geneticamente muito relacionados e que ambos os estoques não apresentam alta variabilidade genética. Estratégias como uma prévia análise genética dos reprodutores com sua marcação, utilização de um grande Ne, cruzamento entre indivíduos geneticamente mais divergentes, além da introdução de um novo material genético aos estoques de reprodutores, poderiam ser utilizadas para maximizar a variabilidade genética e minimizar a endogamia na próxima geração.UEL2017-06-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado por paresPesquisa básicaapplication/pdfhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/2630010.5433/1679-0359.2017v38n3p1665Semina: Ciências Agrárias; Vol. 38 No. 3 (2017); 1665-1670Semina: Ciências Agrárias; v. 38 n. 3 (2017); 1665-16701679-03591676-546Xreponame:Semina. Ciências Agrárias (Online)instname:Universidade Estadual de Londrina (UEL)instacron:UELenghttps://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/26300/21085Copyright (c) 2017 Semina: Ciências Agráriashttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessMoraes Neto, AmericoAyres, Denise RochaStreit Junior, Danilo PedroLopera-Barrero, Nelson MauricioFerraz Filho, Paulo BahienseCorrêa Filho, Ruy Alberto CaetanoSantana, Annaiza Braga BignardiMarciano, Caroline Michele MarinhoMurari, Pâmela Juliana FurlanPovh, Jayme Aparecido2022-10-24T14:10:52Zoai:ojs.pkp.sfu.ca:article/26300Revistahttp://www.uel.br/revistas/uel/index.php/semagrariasPUBhttps://ojs.uel.br/revistas/uel/index.php/semagrarias/oaisemina.agrarias@uel.br1679-03591676-546Xopendoar:2022-10-24T14:10:52Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)false
dc.title.none.fl_str_mv Genetic diversity of tambaqui broodstocks in stock enhancement programs
Diversidade genética de estoques de reprodutores de tambaqui utilizados em programas de repovoamento
title Genetic diversity of tambaqui broodstocks in stock enhancement programs
spellingShingle Genetic diversity of tambaqui broodstocks in stock enhancement programs
Moraes Neto, Americo
Colossoma macropomum
Genetics conservation
Molecular markers
Microsatellite.
Colossoma macropomum
Conservação genética
Marcadores moleculares
Microssatélite.
title_short Genetic diversity of tambaqui broodstocks in stock enhancement programs
title_full Genetic diversity of tambaqui broodstocks in stock enhancement programs
title_fullStr Genetic diversity of tambaqui broodstocks in stock enhancement programs
title_full_unstemmed Genetic diversity of tambaqui broodstocks in stock enhancement programs
title_sort Genetic diversity of tambaqui broodstocks in stock enhancement programs
author Moraes Neto, Americo
author_facet Moraes Neto, Americo
Ayres, Denise Rocha
Streit Junior, Danilo Pedro
Lopera-Barrero, Nelson Mauricio
Ferraz Filho, Paulo Bahiense
Corrêa Filho, Ruy Alberto Caetano
Santana, Annaiza Braga Bignardi
Marciano, Caroline Michele Marinho
Murari, Pâmela Juliana Furlan
Povh, Jayme Aparecido
author_role author
author2 Ayres, Denise Rocha
Streit Junior, Danilo Pedro
Lopera-Barrero, Nelson Mauricio
Ferraz Filho, Paulo Bahiense
Corrêa Filho, Ruy Alberto Caetano
Santana, Annaiza Braga Bignardi
Marciano, Caroline Michele Marinho
Murari, Pâmela Juliana Furlan
Povh, Jayme Aparecido
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Moraes Neto, Americo
Ayres, Denise Rocha
Streit Junior, Danilo Pedro
Lopera-Barrero, Nelson Mauricio
Ferraz Filho, Paulo Bahiense
Corrêa Filho, Ruy Alberto Caetano
Santana, Annaiza Braga Bignardi
Marciano, Caroline Michele Marinho
Murari, Pâmela Juliana Furlan
Povh, Jayme Aparecido
dc.subject.por.fl_str_mv Colossoma macropomum
Genetics conservation
Molecular markers
Microsatellite.
Colossoma macropomum
Conservação genética
Marcadores moleculares
Microssatélite.
topic Colossoma macropomum
Genetics conservation
Molecular markers
Microsatellite.
Colossoma macropomum
Conservação genética
Marcadores moleculares
Microssatélite.
description Natural populations of tambaqui (Colossoma macropomum) have significantly decreased in recent decades especially due to human extraction activities. So that the environmental impact may be reduced, the restocking of fish and increase in fish production are enhanced. Genetic evaluations using molecular markers are essential for this purpose. Current study evaluates the genetic variability of two tambaqui broodstocks used in restocking programs. Sixty-five samples (33 samples from broodstock A and 32 samples from broodstock B) were collected. DNA was extracted from caudal fin samples, with the amplification of four microsatellite loci: Cm1A11 (EU685307) Cm1C8 (EU685308) Cm1F4 (EU685311) and Cm1H8 (EU685315). Fourteen alleles in the stock of broodstock A were produced, five alleles for Cm1A11 locus (230, 255, 260, 270 and 276 bp), three alleles Cm1C8 (239, 260, and 273 bp), two alleles Cm1F4 (211 and 245 bp), four alleles for Cm1H8 (275, 290, 320 and 331 bp) and two unique alleles were found for Cm1A11 loci (alleles 270 and 276 bp) and Cm1H8 (alleles 275 and 331 bp). In broodstock B, ten alleles were produced, the same alleles of the first stock except for alleles 270 and 276 bp in Cm1A11 locus and 275 and 331 bp in Cm1H8 locus. Broodstock A revealed low frequency alleles in Cm1A11 loci, Cm1C8, Cm1F4 and Cm1H8, whereas broodstock B had no locus with low allelic frequency. Loci Cm1A11, Cm1C8 and Cm1H8 exhibited significant deficit of heterozygotes in both broodstocks, revealing changes in Hardy-Weinberg equilibrium. Genetic diversity between stocks was 0.1120, whilst genetic similarity was 0.894, with FST rate = 0.05, and Nm = 3.93, indicating gene flow between the two broodstocks. Results show that broodstocks are genetically closely related, with no great genetic variability. Strategies such as a previous genetic analysis of breeding with its marking, use of a large Ne crossing between the most genetically divergent specimens, and the introduction of new genetic material to broodstocks may maximize genetic diversity and minimize inbreeding within the next generation.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-13
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado por pares
Pesquisa básica
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/26300
10.5433/1679-0359.2017v38n3p1665
url https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/26300
identifier_str_mv 10.5433/1679-0359.2017v38n3p1665
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ojs.uel.br/revistas/uel/index.php/semagrarias/article/view/26300/21085
dc.rights.driver.fl_str_mv Copyright (c) 2017 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Semina: Ciências Agrárias
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv UEL
publisher.none.fl_str_mv UEL
dc.source.none.fl_str_mv Semina: Ciências Agrárias; Vol. 38 No. 3 (2017); 1665-1670
Semina: Ciências Agrárias; v. 38 n. 3 (2017); 1665-1670
1679-0359
1676-546X
reponame:Semina. Ciências Agrárias (Online)
instname:Universidade Estadual de Londrina (UEL)
instacron:UEL
instname_str Universidade Estadual de Londrina (UEL)
instacron_str UEL
institution UEL
reponame_str Semina. Ciências Agrárias (Online)
collection Semina. Ciências Agrárias (Online)
repository.name.fl_str_mv Semina. Ciências Agrárias (Online) - Universidade Estadual de Londrina (UEL)
repository.mail.fl_str_mv semina.agrarias@uel.br
_version_ 1799306076355559424