Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveis

Detalhes bibliográficos
Autor(a) principal: Kato, Camila Gabriel
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
Texto Completo: http://repositorio.uem.br:8080/jspui/handle/1/1485
Resumo: In the human organism, five isoenzymes of amylase have been described, three salivary amylases and two pancreatic amylases. Due to the importance in several metabolic disorders including diabetes and obesity, the pancreatic-amylase has been more extensively studied than the salivary α-amylase. In consequence, a series of pancreatic α-amylase inhibitors are available in the market, such as acarbose. However, the human salivary amylase (HSA), has important roles in the mouth, including hydrolysis of dietary starch, binding to the tooth surface, and binding to oral streptococci. All three actions contribute to the process of dental plaque and caries formation. Tannins are one of the most extensively studied molecules able to inhibit amylases. It is generally believed that the discovery of new materials rich in tannins with enzyme inhibitory properties can contribute for the discovery of new drugs useful in the control and treatment of diabetes, obesity and other physiological disorders, such as oral diseases, including caries. One of the most extensively studied condensed tannin (proanthocyanidin) is that extracted from the bark of the black wattle tree (Acacia mearnsii De Wild.). It is rich in the catechin-like flavan-3-ols monomers robinetinidol and fisetinidol. One of the most simple and common hydrolysable tannin is the gallotannin with up to 12 esterified galloyl groups and a core glucose. This structure is particularly abundant in the gallotannin from chinese natural gallnuts. The aim of the article 1 was to compare the in vitro inhibitory effects on the pancreatic α-amylase and the in vivo hypoglycemic actions of a condensed tannin from A. mearnsii bark and a hydrolysable tannin from Chinese natural gall (Rhus chinensis Mill.). For comparative purposes, similar experiments were also run with acarbose, a highly effective inhibitor of pancreatic α-amylase inhibitor. The aim of the article 2 was to investigate the in vitro inhibitory effects on the human salivary α-amylase of the same two tannins in the search of new molecules with an increased affinity and specificity for the enzyme. In both articles, in the in vitro experiments, especial attention has been devoted to the kinetics of the inhibition, with a detailed search for the model that best describes the mechanism of action. Human salivary α-amylase (HAS), porcine pancreatic α-amylase, acarbose and hydrolysable tannin from Chinese gall nut were obtained from Sigma-Aldrich Co. The Acacia mearnsii bark tannin was purchased from Labsynth, Brazil. The kinetic experiments with the HAS and pancreatic α-amylase were carried out at 37 oC in 20 mM phosphate buffer pH 6.9 containing 6.7 mM NaCl. Potato starch (Sigma-Aldrich) was used as substrate. Substrate and one of the three inhibitors, acarbose, condensed tannin or hydrolysable tannin were mixed and the reaction was initiated by adding the enzyme. The reaction was allowed to proceed for 5 min. The produced reducing sugars were assayed by the dinitrosalicylic acid method, using maltose as standard. Statistical analysis of the data was done by means of the Statistica program (Statsoft, Inc., Tulsa, OK). Fitting of the rate equations to the experimental initial rates was done by means of an iterative non-linear least-squares procedure using the Scientist software from MicroMath Scientific Software (Salt Lake City, UT). The decision as to the most adequate model (equation) was based on the model selection criterion (MSC) and on the standard deviations of the optimized parameters. Male healthy Wistar rats weighing 200 250 g were used in all in vivo experiments. Rats were divided into 9 groups (n = 4 rats per group). To group I (positive control) commercial corn starch (1 g per kg body weight) was administered intragastrically. Group II (negative control) received only tap water. Group III received intragastrically commercial corn starch plus acarbose (50 mg/kg). Groups IV, V and VI received intragastrically commercial corn starch plus A. mearnsii tannin 100, 250 and 500 mg/kg respectively. Finally, groups VII, VIII and IX received intragastrically commercial corn starch plus tannic acid extracts 100, 250 and 500 mg/kg respectively. The amounts of inhibitors given to the rats were based on literature data (Ikarashi et al., 2011). Fasting blood glucose levels were determined before the administration of starch and amylase inhibitors (0 time). Later evaluations of blood glucose levels took place at 15, 30, 45 and 60 min. Blood glucose from cut tail tips was determined using Accu-Chek® Active Glucose Meter. In the article 1, both tannins inhibited the enzyme. At a starch (substrate) concentration of 1 g/100 mL the concentrations for 50% inhibition (EC50) were 240 μg hydrolysable tannin per mL and 200 μg condensed tannin per mL. For acarbose the EC50 value was 2.2 μg/mL. The kinetics of the inhibition presented a complex pattern in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition). The same phenomenon was found for acarbose. This is revealed a priori by the non-linear 1/v versus [I] plots and by the successful fitting of kinetic equations containing squared inhibitor concentration terms (e.g., [I]2). Both tannins were able to inhibit the intestinal starch absorption, as revealed by starch tolerance tests in rats. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 100 mg/kg and 88% inhibition at the dose of 500 mg/kg. For the condensed tannin, inhibition was not substantially different for doses between 100 mg/kg (49%) and 500 mg/kg (57%). It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the post-prandial glycemic levels in diabetic patients. In the article 2, in the experiments using HAS, it was possible to calculate the IC50 values (inhibitor concentration producing 50% inhibition) for a starch concentration of 1 g/100 mL of 80 μg/mL and 230 μg/mL for the hydrolysable and condensed tannins, respectively. From the kinetic analysis it can be concluded that inhibition of the HSA by both tannins is of the mixed (or non-competitive) type. The free HSA binds the hydrolysable tannin with higher affinity considering that the Ki1 value was 22.4±2.9 μg/mL while the Ki1 value for condensed tannin was 157.1±12.6 μg/mL. Taking into account that HSA has an important role in the dental plaque formation and subsequent dental caries formation, the strong inhibitory action of the hydrolysable tannin could make it an useful agent for oral health.
id UEM-10_05f9f4eaa8e628f23da8721adce08786
oai_identifier_str oai:localhost:1/1485
network_acronym_str UEM-10
network_name_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository_id_str
spelling Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveisEnzimologiaAmilasesAlfa-amilasesAlfa-amilases pancreáticasAlfa-amilases salivaresTaninosInibidores das α-amilasesCáriesDiabetesTaninos condensadosTaninos hidrolisáveisBrasil.α-amylase inhibitorsCariesDiabetesCondensed tanninsHydrolysed tanninsBrazil.Ciências AgráriasCiência e Tecnologia de AlimentosIn the human organism, five isoenzymes of amylase have been described, three salivary amylases and two pancreatic amylases. Due to the importance in several metabolic disorders including diabetes and obesity, the pancreatic-amylase has been more extensively studied than the salivary α-amylase. In consequence, a series of pancreatic α-amylase inhibitors are available in the market, such as acarbose. However, the human salivary amylase (HSA), has important roles in the mouth, including hydrolysis of dietary starch, binding to the tooth surface, and binding to oral streptococci. All three actions contribute to the process of dental plaque and caries formation. Tannins are one of the most extensively studied molecules able to inhibit amylases. It is generally believed that the discovery of new materials rich in tannins with enzyme inhibitory properties can contribute for the discovery of new drugs useful in the control and treatment of diabetes, obesity and other physiological disorders, such as oral diseases, including caries. One of the most extensively studied condensed tannin (proanthocyanidin) is that extracted from the bark of the black wattle tree (Acacia mearnsii De Wild.). It is rich in the catechin-like flavan-3-ols monomers robinetinidol and fisetinidol. One of the most simple and common hydrolysable tannin is the gallotannin with up to 12 esterified galloyl groups and a core glucose. This structure is particularly abundant in the gallotannin from chinese natural gallnuts. The aim of the article 1 was to compare the in vitro inhibitory effects on the pancreatic α-amylase and the in vivo hypoglycemic actions of a condensed tannin from A. mearnsii bark and a hydrolysable tannin from Chinese natural gall (Rhus chinensis Mill.). For comparative purposes, similar experiments were also run with acarbose, a highly effective inhibitor of pancreatic α-amylase inhibitor. The aim of the article 2 was to investigate the in vitro inhibitory effects on the human salivary α-amylase of the same two tannins in the search of new molecules with an increased affinity and specificity for the enzyme. In both articles, in the in vitro experiments, especial attention has been devoted to the kinetics of the inhibition, with a detailed search for the model that best describes the mechanism of action. Human salivary α-amylase (HAS), porcine pancreatic α-amylase, acarbose and hydrolysable tannin from Chinese gall nut were obtained from Sigma-Aldrich Co. The Acacia mearnsii bark tannin was purchased from Labsynth, Brazil. The kinetic experiments with the HAS and pancreatic α-amylase were carried out at 37 oC in 20 mM phosphate buffer pH 6.9 containing 6.7 mM NaCl. Potato starch (Sigma-Aldrich) was used as substrate. Substrate and one of the three inhibitors, acarbose, condensed tannin or hydrolysable tannin were mixed and the reaction was initiated by adding the enzyme. The reaction was allowed to proceed for 5 min. The produced reducing sugars were assayed by the dinitrosalicylic acid method, using maltose as standard. Statistical analysis of the data was done by means of the Statistica program (Statsoft, Inc., Tulsa, OK). Fitting of the rate equations to the experimental initial rates was done by means of an iterative non-linear least-squares procedure using the Scientist software from MicroMath Scientific Software (Salt Lake City, UT). The decision as to the most adequate model (equation) was based on the model selection criterion (MSC) and on the standard deviations of the optimized parameters. Male healthy Wistar rats weighing 200 250 g were used in all in vivo experiments. Rats were divided into 9 groups (n = 4 rats per group). To group I (positive control) commercial corn starch (1 g per kg body weight) was administered intragastrically. Group II (negative control) received only tap water. Group III received intragastrically commercial corn starch plus acarbose (50 mg/kg). Groups IV, V and VI received intragastrically commercial corn starch plus A. mearnsii tannin 100, 250 and 500 mg/kg respectively. Finally, groups VII, VIII and IX received intragastrically commercial corn starch plus tannic acid extracts 100, 250 and 500 mg/kg respectively. The amounts of inhibitors given to the rats were based on literature data (Ikarashi et al., 2011). Fasting blood glucose levels were determined before the administration of starch and amylase inhibitors (0 time). Later evaluations of blood glucose levels took place at 15, 30, 45 and 60 min. Blood glucose from cut tail tips was determined using Accu-Chek® Active Glucose Meter. In the article 1, both tannins inhibited the enzyme. At a starch (substrate) concentration of 1 g/100 mL the concentrations for 50% inhibition (EC50) were 240 μg hydrolysable tannin per mL and 200 μg condensed tannin per mL. For acarbose the EC50 value was 2.2 μg/mL. The kinetics of the inhibition presented a complex pattern in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition). The same phenomenon was found for acarbose. This is revealed a priori by the non-linear 1/v versus [I] plots and by the successful fitting of kinetic equations containing squared inhibitor concentration terms (e.g., [I]2). Both tannins were able to inhibit the intestinal starch absorption, as revealed by starch tolerance tests in rats. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 100 mg/kg and 88% inhibition at the dose of 500 mg/kg. For the condensed tannin, inhibition was not substantially different for doses between 100 mg/kg (49%) and 500 mg/kg (57%). It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the post-prandial glycemic levels in diabetic patients. In the article 2, in the experiments using HAS, it was possible to calculate the IC50 values (inhibitor concentration producing 50% inhibition) for a starch concentration of 1 g/100 mL of 80 μg/mL and 230 μg/mL for the hydrolysable and condensed tannins, respectively. From the kinetic analysis it can be concluded that inhibition of the HSA by both tannins is of the mixed (or non-competitive) type. The free HSA binds the hydrolysable tannin with higher affinity considering that the Ki1 value was 22.4±2.9 μg/mL while the Ki1 value for condensed tannin was 157.1±12.6 μg/mL. Taking into account that HSA has an important role in the dental plaque formation and subsequent dental caries formation, the strong inhibitory action of the hydrolysable tannin could make it an useful agent for oral health.Cinco isoamilases têm sido descritas no organismo humano, sendo três amilases salivares e duas amilases pancreáticas. Devido à importância em diversas desordens metabólicas incluindo diabetes e obesidade, a amilase pancreática tem recebido mais atenção que a amilase salivar. Em consequência, uma série de inibidores da amilase pancreática estão disponíveis no mercado, tais como a acarbose, voglibose e miglitol. Entretanto, a amilase salivar humana (HSA), desempenha importantes papéis na boca, incluindo hidrólise do amido da dieta, ligação com a superfície do dente e ligação com bactérias bucais. Todas as três ações contribuem para o processo de formação da placa dental e formação das cáries. Os taninos são moléculas exploradas como inibidores das amilases. Acredita-se que a descoberta de novos materiais ricos em taninos capazes de inibir enzimas possam contribuir para a descoberta de novos medicamentos úteis no controle e tratamento de diabetes, obesidade e outras desordens fisiológicas, tais como as doenças da cavidade bucal, incluindo as cáries. Um dos mais extensivamente estudados taninos condensados (proantocianidina) é o extraído da casca da árvore Acacia negra (Acacia mearnsii De Wild.). Este tanino é particularmente rico nos monômeros robinetinidol e fisetinidol. Um dos mais simples e comum tanino hidrolisável é o galotanino com 12 grupos galoil esterificados e um núcleo de glicose. Esta estrutura é particularmente abundante no galotanino da galha de Rhus chinensis Mill. (chinese natural gallnut). O objetivo do artigo 1 foi comparar os efeitos inibitórios do tanino condensado de A. mearnsii e do tanino hidrolisável da galha de R. chinensis sobre as amilase pancreática in vitro e ação hipoglicêmica in vivo. Para propósitos comparativos, experimentos similares foram conduzidos utilizando acarbose, eficiente inibidor da amilase pancreática. O objetivo do artigo 2 foi investigar os efeitos inibitórios dos dois taninos descritos acima sobre a amilase salivar. Em ambos os artigos, nos experimentos in vitro foi devotada uma atenção à cinética da inibição, com uma detalhada análise para o modelo que melhor descreve os mecanismos de ação dos inibidores. Amilase salivar humana, amilase pancreática de porco, acarbose e tanino hidrolisável de galha de Rhus chinensis foram adquiridos do Sigma-Aldrich Co. Tanino condensado de Acacia mearnsii foi adquirido do Labsynth, Brasil. Os experimentos cinéticos com as amilases salivar e pancreática foram conduzidos à 37 oC em tampão fosfato pH 6.9 contendo 6.7 mM NaCl. Amido de batata (Sigma-Aldrich) foi utilizado como substrato. O substrato e um dos três inibidores, acarbose, tanino condensado e tanino hidrolisável foram misturados e a reação foi iniciada pela adição da enzima. A reação ocorreu por 10 minutos. Os açúcares redutores liberados foram quantificados pelo método do ácido 3,5 dinitro-salicílico, utilizando glicose como padrão. Análise estatística dos dados foi realizada por meio do programa Statistica (Statsoft, Inc., Tulsa, OK). O ajuste das equações de velocidade inicial aos dados experimentais foi realizada por meio de procedimento iterative não linear de mínimos quadrados utilizando o programa Scientist (MicroMath Scientific Software, Salt Lake City, UT). A decisão pelo melhor modelo (equação) baseou-se no critério de seleção de modelo (MSC) e nos desvios-padrão dos parâmetros otimizados. Ratos machos Wistar com peso entre 200 250 g foram utilizados nos experimentos in vivo. Os animais foram divididos em 9 grupos (n = 4 ratos por grupo). No grupo I (controle positivo) amido comercial de milho (1 g por kg de peso corporal) foi administrado intragastricamente. O grupo II (controle negativo) recebeu apenas água. Grupo III recebeu intragastricamente amido de milho comercial mais acarbose (50 mg/kg). Os Grupos IV, V e VI foi administrado amido de milho comercial e tanino de A. mearnsii nas concentrações 100, 250 e 500 mg/kg respectivamente. Finalmente, nos grupo VII, VIII e IX foi dado intragastricamente amido de milho comercial e tanino hidrolisável 100, 250 e 500mg/kg respectivamente. A glicemia foi avaliada antes da administração do amido e inibidores de amilase (tempo 0). Novas avaliações de glicemia foram realizadas após 15, 30, 45 e 60 minutos. Um pequeno corte na cauda do animal foi realizado para obtenção de sangue para avaliação da glicemia utilizando Accu-Chek® Active Glucose Meter. No artigo 1, ambos os taninos inibiram a amilase pancreática. Para uma concentração de amido (substrato) de 1 g/100 mL, as concentrações de inibidores capazes de inibir a atividade em 50% (EC50) foram de 240 μg/mL tanino hidrolisável e 200 μg/mL de tanino condensado. Para a acarbose, o EC50 foi 2.2 μg/mL. As cinéticas de inibição apresentaram padrões complexos nos quais para ambos os inibidores, mais de uma molécula podem se ligar simultaneamente na enzima livre ou na enzima complexada com o substrato (inibição mista parabólica). O mesmo fenômeno foi encontrado para a acarbose. Isto é revelado a priori pelos plots não lineares 1/v versus [I] e pelos ajustes das equações cinéticas contendo termos de concentração do inibidor elevado ao quadrado (por exemplo, [I]2). Ambos os taninos foram hábeis em inibir a absorção intestinal de amido, como revelado pelos testes de tolerância ao amido em ratos. A inibição pelo tanino hidrolisável foi dependente da concentração, com 53% de inibição na dose de 100 mg/kg e 88% de inibição na dose de 500 mg/kg. Para o tanino condensado, inibição não foi substancialmente diferente para as doses entre 100 mg/kg (49%) e 500 mg/kg (57%). Podemos concluir que ambos os taninos, mas especialmente o tanino hidrolisável pode ser útil no controle dos níveis glicêmicos pós-prandiais em pacientes diabéticos. No artigo 2, em experimentos utilizando a amilase salivar humana, foi possível calcular os valores de EC50 (concentração do inibidor capaz de produzir uma inibição de 50%) para uma concentração de amido de 1 g/100 mL de 80 μg/mL e 230 μg/mL para o tanino hidrolisável e tanino condensado, respectivamente. A partir da análise dos dados cinéticos, pode-se concluir ambos os taninos causam na HAS uma inibição mista (não competitiva). A HAS livre liga-se ao tanino hidrolisável com maior afinidade, considerando-se o valor de Ki1 de 22.4±2.9 μg/mL, enquanto Ki1 para o tanino condensado foi de 157.1±12.6 μg/mL. Levando-se em consideração o importante papel da HAS na formação da placa dentária e subsequente formação da cárie dental, a forte ação inibitória do tanino hidrolisável faz dele um agente útil para a manutenção da saúde bucal.59 fUniversidade Estadual de MaringáBrasilPrograma de Pós-Graduação em Ciência de AlimentosUEMMaringá, PRCentro de Ciências AgráriasRosane Marina PeraltaFlávio Augusto Vicente de SeixasJoão Carlos Palazzo de MelloKato, Camila Gabriel2018-04-05T18:08:32Z2018-04-05T18:08:32Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://repositorio.uem.br:8080/jspui/handle/1/1485porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-04-05T18:08:32Zoai:localhost:1/1485Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:54:25.993329Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveis
title Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveis
spellingShingle Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveis
Kato, Camila Gabriel
Enzimologia
Amilases
Alfa-amilases
Alfa-amilases pancreáticas
Alfa-amilases salivares
Taninos
Inibidores das α-amilases
Cáries
Diabetes
Taninos condensados
Taninos hidrolisáveis
Brasil.
α-amylase inhibitors
Caries
Diabetes
Condensed tannins
Hydrolysed tannins
Brazil.
Ciências Agrárias
Ciência e Tecnologia de Alimentos
title_short Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveis
title_full Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveis
title_fullStr Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveis
title_full_unstemmed Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveis
title_sort Efeitos inibitórios in vitro da atividade da α-amilase pancreática e salivar e ações hipoglicêmicas de taninos condensados e hidrolisáveis
author Kato, Camila Gabriel
author_facet Kato, Camila Gabriel
author_role author
dc.contributor.none.fl_str_mv Rosane Marina Peralta
Flávio Augusto Vicente de Seixas
João Carlos Palazzo de Mello
dc.contributor.author.fl_str_mv Kato, Camila Gabriel
dc.subject.por.fl_str_mv Enzimologia
Amilases
Alfa-amilases
Alfa-amilases pancreáticas
Alfa-amilases salivares
Taninos
Inibidores das α-amilases
Cáries
Diabetes
Taninos condensados
Taninos hidrolisáveis
Brasil.
α-amylase inhibitors
Caries
Diabetes
Condensed tannins
Hydrolysed tannins
Brazil.
Ciências Agrárias
Ciência e Tecnologia de Alimentos
topic Enzimologia
Amilases
Alfa-amilases
Alfa-amilases pancreáticas
Alfa-amilases salivares
Taninos
Inibidores das α-amilases
Cáries
Diabetes
Taninos condensados
Taninos hidrolisáveis
Brasil.
α-amylase inhibitors
Caries
Diabetes
Condensed tannins
Hydrolysed tannins
Brazil.
Ciências Agrárias
Ciência e Tecnologia de Alimentos
description In the human organism, five isoenzymes of amylase have been described, three salivary amylases and two pancreatic amylases. Due to the importance in several metabolic disorders including diabetes and obesity, the pancreatic-amylase has been more extensively studied than the salivary α-amylase. In consequence, a series of pancreatic α-amylase inhibitors are available in the market, such as acarbose. However, the human salivary amylase (HSA), has important roles in the mouth, including hydrolysis of dietary starch, binding to the tooth surface, and binding to oral streptococci. All three actions contribute to the process of dental plaque and caries formation. Tannins are one of the most extensively studied molecules able to inhibit amylases. It is generally believed that the discovery of new materials rich in tannins with enzyme inhibitory properties can contribute for the discovery of new drugs useful in the control and treatment of diabetes, obesity and other physiological disorders, such as oral diseases, including caries. One of the most extensively studied condensed tannin (proanthocyanidin) is that extracted from the bark of the black wattle tree (Acacia mearnsii De Wild.). It is rich in the catechin-like flavan-3-ols monomers robinetinidol and fisetinidol. One of the most simple and common hydrolysable tannin is the gallotannin with up to 12 esterified galloyl groups and a core glucose. This structure is particularly abundant in the gallotannin from chinese natural gallnuts. The aim of the article 1 was to compare the in vitro inhibitory effects on the pancreatic α-amylase and the in vivo hypoglycemic actions of a condensed tannin from A. mearnsii bark and a hydrolysable tannin from Chinese natural gall (Rhus chinensis Mill.). For comparative purposes, similar experiments were also run with acarbose, a highly effective inhibitor of pancreatic α-amylase inhibitor. The aim of the article 2 was to investigate the in vitro inhibitory effects on the human salivary α-amylase of the same two tannins in the search of new molecules with an increased affinity and specificity for the enzyme. In both articles, in the in vitro experiments, especial attention has been devoted to the kinetics of the inhibition, with a detailed search for the model that best describes the mechanism of action. Human salivary α-amylase (HAS), porcine pancreatic α-amylase, acarbose and hydrolysable tannin from Chinese gall nut were obtained from Sigma-Aldrich Co. The Acacia mearnsii bark tannin was purchased from Labsynth, Brazil. The kinetic experiments with the HAS and pancreatic α-amylase were carried out at 37 oC in 20 mM phosphate buffer pH 6.9 containing 6.7 mM NaCl. Potato starch (Sigma-Aldrich) was used as substrate. Substrate and one of the three inhibitors, acarbose, condensed tannin or hydrolysable tannin were mixed and the reaction was initiated by adding the enzyme. The reaction was allowed to proceed for 5 min. The produced reducing sugars were assayed by the dinitrosalicylic acid method, using maltose as standard. Statistical analysis of the data was done by means of the Statistica program (Statsoft, Inc., Tulsa, OK). Fitting of the rate equations to the experimental initial rates was done by means of an iterative non-linear least-squares procedure using the Scientist software from MicroMath Scientific Software (Salt Lake City, UT). The decision as to the most adequate model (equation) was based on the model selection criterion (MSC) and on the standard deviations of the optimized parameters. Male healthy Wistar rats weighing 200 250 g were used in all in vivo experiments. Rats were divided into 9 groups (n = 4 rats per group). To group I (positive control) commercial corn starch (1 g per kg body weight) was administered intragastrically. Group II (negative control) received only tap water. Group III received intragastrically commercial corn starch plus acarbose (50 mg/kg). Groups IV, V and VI received intragastrically commercial corn starch plus A. mearnsii tannin 100, 250 and 500 mg/kg respectively. Finally, groups VII, VIII and IX received intragastrically commercial corn starch plus tannic acid extracts 100, 250 and 500 mg/kg respectively. The amounts of inhibitors given to the rats were based on literature data (Ikarashi et al., 2011). Fasting blood glucose levels were determined before the administration of starch and amylase inhibitors (0 time). Later evaluations of blood glucose levels took place at 15, 30, 45 and 60 min. Blood glucose from cut tail tips was determined using Accu-Chek® Active Glucose Meter. In the article 1, both tannins inhibited the enzyme. At a starch (substrate) concentration of 1 g/100 mL the concentrations for 50% inhibition (EC50) were 240 μg hydrolysable tannin per mL and 200 μg condensed tannin per mL. For acarbose the EC50 value was 2.2 μg/mL. The kinetics of the inhibition presented a complex pattern in that for both inhibitors more than one molecule can bind simultaneously to either the free enzyme of the substrate-complexed enzyme (parabolic mixed inhibition). The same phenomenon was found for acarbose. This is revealed a priori by the non-linear 1/v versus [I] plots and by the successful fitting of kinetic equations containing squared inhibitor concentration terms (e.g., [I]2). Both tannins were able to inhibit the intestinal starch absorption, as revealed by starch tolerance tests in rats. Inhibition by the hydrolysable tannin was concentration-dependent, with 53% inhibition at the dose of 100 mg/kg and 88% inhibition at the dose of 500 mg/kg. For the condensed tannin, inhibition was not substantially different for doses between 100 mg/kg (49%) and 500 mg/kg (57%). It can be concluded that both tannins, but especially the hydrolysable one, could be useful in controlling the post-prandial glycemic levels in diabetic patients. In the article 2, in the experiments using HAS, it was possible to calculate the IC50 values (inhibitor concentration producing 50% inhibition) for a starch concentration of 1 g/100 mL of 80 μg/mL and 230 μg/mL for the hydrolysable and condensed tannins, respectively. From the kinetic analysis it can be concluded that inhibition of the HSA by both tannins is of the mixed (or non-competitive) type. The free HSA binds the hydrolysable tannin with higher affinity considering that the Ki1 value was 22.4±2.9 μg/mL while the Ki1 value for condensed tannin was 157.1±12.6 μg/mL. Taking into account that HSA has an important role in the dental plaque formation and subsequent dental caries formation, the strong inhibitory action of the hydrolysable tannin could make it an useful agent for oral health.
publishDate 2016
dc.date.none.fl_str_mv 2016
2018-04-05T18:08:32Z
2018-04-05T18:08:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.uem.br:8080/jspui/handle/1/1485
url http://repositorio.uem.br:8080/jspui/handle/1/1485
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Programa de Pós-Graduação em Ciência de Alimentos
UEM
Maringá, PR
Centro de Ciências Agrárias
publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Programa de Pós-Graduação em Ciência de Alimentos
UEM
Maringá, PR
Centro de Ciências Agrárias
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
collection Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository.name.fl_str_mv Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv
_version_ 1801841387193237504