Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em pó

Detalhes bibliográficos
Autor(a) principal: Oliveira, Dalany Menezes
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
dARK ID: ark:/35916/0013000002z11
Texto Completo: http://repositorio.uem.br:8080/jspui/handle/1/1434
Resumo: Grugru palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) is native to the savannas, open woodlands and 'cerrados' in tropical America. Several products can be obtained from such palm, especially the fruit pulp with great nutritional potential once it is a natural source of ß-carotene, vitamin A and minerals. Grugru palm fruits can be consumed fresh or in powder form, they can also be used as raw material for formulations many products formulations. The powder can be obtained by different drying techniques, but some of these processes cause a large quality loss (nutritional and sensory) in the final product. For this reason, knowing the properties of the grugru palm pulp and powder is important for adding value to the regional fruits and approaching the drying processes for better conservation, development of products and preparation of various types of food. AIMS. Application of two drying processes, lyophilization and oven dehydration in order to obtain grugru palm powder, carry out physical and hysicochemical evaluations, determine bioactive components and both pulp and powder hygroscopic behavior to finally evaluate the stability of quality parameters for the dehydrated product stored for 120 days in different packages. The grugru palm fruits were harvested in the Araripe Plateau of Cariri area, State of Ceara, Brazil, and then taken to the Laboratory of Food Quality Control and Drying of Federal University of Ceará (UFC) the fruits were selected according to both ripeness and sanity rates to be soon sanitized and peeled, the pulp was then set apart by the use of a knife and stainless steel. All the obtained pulp was homogenised, grinded and divided in plastic packages containing 100g pulp. Initially, the product characterization was conducted concerning respiratory rate, physical, chemical and mineral analysis. Later on, the analyses on the pulp were performed, handled to form two types of pulp: integral pulp (IP) and pulp with 8% maltodextrin (MP). Four grugru palm powders were prepared using the following processes: oven drying with air circulation at 65° C for 25 hours, without maltodextrin (T1) and with 8% of maltodextrin (T2); lyophilization for 25 hours, without maltodextrin (T3) and with 8% of maltodextrin (T4). Physical analyses were conducted on: water activity, color, adsorption isotherms, hygroscopicity and degree of caking; Physcochemical analyses were conducted on: moisture, pH, tritable acidity, soluble solids; Bioactive components: total phenolic, yellow flavonoids, vitamin C, ß-carotene and vitamin A. While studying the stability of quality parameters, each treatment was placed in different packages: plastic - P; laminated - L; laminated and vacuum closed - LV. Subsequently, the packages were stored at room temperature (± 25° C) for 120 days and analyzed every 30 days for the following determinations: moisture, water activity, color, ß-carotene, total phenolics and yellow flavonoids. Data were statistically analyzed through the analysis of variance (ANOVA), the differences between the averages were determined by the Tukey test at 5% probability. The fresh fruit evaluation revealed a respiration rate of 74.45 ml CO2.kg-1. h-1. High levels of sugars, soluble solids, pH, aw, lipids and carotenoids were found; however, the pulp showed low levels of acidity, moisture and ashes. Potassium (K) presented the highest content, followed by magnesium (Mg) and calcium (Ca); zinc (Zn) showed the lowest content. The results also showed high contents of ß-carotene and vitamin A, high levels of water activity and soluble solids, low level of moisture and acidity in the grugru palm pulp, characterizing it as a sweet product. The pulps in this study showed an orange color, and the IP showed a more intense orange color than that from MP. The T3 and T4 treatments presented the highest levels of the bioactive compounds: phenolics, vitamin C, ß-carotene and vitamin A, indicating that lyophilization was better in holding these compounds. However, both T1 and T2 levels of flavonoids showed higher values than those of T3 and T4. The best treatment in reducing moisture and water activity (aw) was T3, but all drying methods reduced moisture and aw levels, thus providing the inhibition of microbial growth. The T2 powder showed the darkest L* parameter, and the chromaticities a* and b* of T3 presented the most saturated yellow color followed by T4, revealing more attractive colors. The adsorption isotherms results showed that all models studied were fitted to the grugru palm powder dehydrated in oven and lyophilization. The adsorption isotherms were classified as Type III. The values for hygroscopic behaviors were 6.39 and 5.17% and for degree of caking were 3.11 and 0.03% for T1 and T2, respectively. The values for hygroscopic behaviors were 7.68 and 6.86% and for degree of caking 0.33 and 0.09% for T3 and T4, respectively. The GAB model was the best at representing isotherms behavior in T1 and T3, and the Oswin model in T2 and T4. For stability study on bioactive compounds and the quality parameters for grugru palm powder analyzed each 30 days during 120 days of storage at room temperature (± 25° C), the following results were obtained: the moisture content and water activity for all treatments and packages presented a gradual increase, except for water activity in T1 and T2 packed in LV. At the end of 120 days of storage, all treatments stored in plastic bags (P) and T1 stored in laminated packs surpassed the maximum moisture allowed by the legislation. In the color evaluation, T1 showed the most visible changes in brightness (L*) at the end of the experiment. The values for -a* coordinate were low, presenting a grayish hue for the powder; this coordinate showed no significant decrease during the storage period. The chromaticity +b* showed a yellow hue for the powder for all treatments, being T3 and T4 more saturated than T1 and T2. The dehydration method affected the content of ß-carotene: T3 and T4 ß-carotene concentrations were higher than those from oven dehydration (T1 and T2); another factor that influenced the ß-carotene content was the addition of maltodextrin. During the storage period, the ß-carotene has degraded regardless of both treatment and packaging. The phenolic contents presented a decrease at the end of the storage period. All treatments showed a slight fluctuation in the flavonoids values and a raise at the end of 120 days of storage. The grugru palm fruit has a high respiratory rate, therefore the pulp processing is recommended in order to increase the product shelf life. Grugru palm pulp proved to be a sweet fruit, presenting low acidity, orange color and excellent levels of bioactive components, particularly the levels of ß-carotene. The adsorption isotherms of grugru palm powders can be classified as Type III. This powder is regarded as a nonhygroscopic and non-caking product. The best drying process in this study was lyophilization. The best conservation of grugru palm powder at room temperature (± 25° C) is lyophilization without maltodextrin (T3) and storage in laminated and vacuum closed packages (LV). This way, grugru palm can be regarded as an alternative for food enrichment and supplement.
id UEM-10_3a0efcf3a25998c39696f99877fe654d
oai_identifier_str oai:localhost:1/1434
network_acronym_str UEM-10
network_name_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository_id_str
spelling Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em póAcrocomia aculeataSecagemLiofilizaçãoß-carotenoMacaúbaSuplementação alimentarBrasil.Acrocomia aculeataDryingLyophilizationbeta-caroteneMacaúbaSupplementary feedingBrazil.Ciências AgráriasCiência e Tecnologia de AlimentosGrugru palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) is native to the savannas, open woodlands and 'cerrados' in tropical America. Several products can be obtained from such palm, especially the fruit pulp with great nutritional potential once it is a natural source of ß-carotene, vitamin A and minerals. Grugru palm fruits can be consumed fresh or in powder form, they can also be used as raw material for formulations many products formulations. The powder can be obtained by different drying techniques, but some of these processes cause a large quality loss (nutritional and sensory) in the final product. For this reason, knowing the properties of the grugru palm pulp and powder is important for adding value to the regional fruits and approaching the drying processes for better conservation, development of products and preparation of various types of food. AIMS. Application of two drying processes, lyophilization and oven dehydration in order to obtain grugru palm powder, carry out physical and hysicochemical evaluations, determine bioactive components and both pulp and powder hygroscopic behavior to finally evaluate the stability of quality parameters for the dehydrated product stored for 120 days in different packages. The grugru palm fruits were harvested in the Araripe Plateau of Cariri area, State of Ceara, Brazil, and then taken to the Laboratory of Food Quality Control and Drying of Federal University of Ceará (UFC) the fruits were selected according to both ripeness and sanity rates to be soon sanitized and peeled, the pulp was then set apart by the use of a knife and stainless steel. All the obtained pulp was homogenised, grinded and divided in plastic packages containing 100g pulp. Initially, the product characterization was conducted concerning respiratory rate, physical, chemical and mineral analysis. Later on, the analyses on the pulp were performed, handled to form two types of pulp: integral pulp (IP) and pulp with 8% maltodextrin (MP). Four grugru palm powders were prepared using the following processes: oven drying with air circulation at 65° C for 25 hours, without maltodextrin (T1) and with 8% of maltodextrin (T2); lyophilization for 25 hours, without maltodextrin (T3) and with 8% of maltodextrin (T4). Physical analyses were conducted on: water activity, color, adsorption isotherms, hygroscopicity and degree of caking; Physcochemical analyses were conducted on: moisture, pH, tritable acidity, soluble solids; Bioactive components: total phenolic, yellow flavonoids, vitamin C, ß-carotene and vitamin A. While studying the stability of quality parameters, each treatment was placed in different packages: plastic - P; laminated - L; laminated and vacuum closed - LV. Subsequently, the packages were stored at room temperature (± 25° C) for 120 days and analyzed every 30 days for the following determinations: moisture, water activity, color, ß-carotene, total phenolics and yellow flavonoids. Data were statistically analyzed through the analysis of variance (ANOVA), the differences between the averages were determined by the Tukey test at 5% probability. The fresh fruit evaluation revealed a respiration rate of 74.45 ml CO2.kg-1. h-1. High levels of sugars, soluble solids, pH, aw, lipids and carotenoids were found; however, the pulp showed low levels of acidity, moisture and ashes. Potassium (K) presented the highest content, followed by magnesium (Mg) and calcium (Ca); zinc (Zn) showed the lowest content. The results also showed high contents of ß-carotene and vitamin A, high levels of water activity and soluble solids, low level of moisture and acidity in the grugru palm pulp, characterizing it as a sweet product. The pulps in this study showed an orange color, and the IP showed a more intense orange color than that from MP. The T3 and T4 treatments presented the highest levels of the bioactive compounds: phenolics, vitamin C, ß-carotene and vitamin A, indicating that lyophilization was better in holding these compounds. However, both T1 and T2 levels of flavonoids showed higher values than those of T3 and T4. The best treatment in reducing moisture and water activity (aw) was T3, but all drying methods reduced moisture and aw levels, thus providing the inhibition of microbial growth. The T2 powder showed the darkest L* parameter, and the chromaticities a* and b* of T3 presented the most saturated yellow color followed by T4, revealing more attractive colors. The adsorption isotherms results showed that all models studied were fitted to the grugru palm powder dehydrated in oven and lyophilization. The adsorption isotherms were classified as Type III. The values for hygroscopic behaviors were 6.39 and 5.17% and for degree of caking were 3.11 and 0.03% for T1 and T2, respectively. The values for hygroscopic behaviors were 7.68 and 6.86% and for degree of caking 0.33 and 0.09% for T3 and T4, respectively. The GAB model was the best at representing isotherms behavior in T1 and T3, and the Oswin model in T2 and T4. For stability study on bioactive compounds and the quality parameters for grugru palm powder analyzed each 30 days during 120 days of storage at room temperature (± 25° C), the following results were obtained: the moisture content and water activity for all treatments and packages presented a gradual increase, except for water activity in T1 and T2 packed in LV. At the end of 120 days of storage, all treatments stored in plastic bags (P) and T1 stored in laminated packs surpassed the maximum moisture allowed by the legislation. In the color evaluation, T1 showed the most visible changes in brightness (L*) at the end of the experiment. The values for -a* coordinate were low, presenting a grayish hue for the powder; this coordinate showed no significant decrease during the storage period. The chromaticity +b* showed a yellow hue for the powder for all treatments, being T3 and T4 more saturated than T1 and T2. The dehydration method affected the content of ß-carotene: T3 and T4 ß-carotene concentrations were higher than those from oven dehydration (T1 and T2); another factor that influenced the ß-carotene content was the addition of maltodextrin. During the storage period, the ß-carotene has degraded regardless of both treatment and packaging. The phenolic contents presented a decrease at the end of the storage period. All treatments showed a slight fluctuation in the flavonoids values and a raise at the end of 120 days of storage. The grugru palm fruit has a high respiratory rate, therefore the pulp processing is recommended in order to increase the product shelf life. Grugru palm pulp proved to be a sweet fruit, presenting low acidity, orange color and excellent levels of bioactive components, particularly the levels of ß-carotene. The adsorption isotherms of grugru palm powders can be classified as Type III. This powder is regarded as a nonhygroscopic and non-caking product. The best drying process in this study was lyophilization. The best conservation of grugru palm powder at room temperature (± 25° C) is lyophilization without maltodextrin (T3) and storage in laminated and vacuum closed packages (LV). This way, grugru palm can be regarded as an alternative for food enrichment and supplement.A palmeira da macaúba (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) é nativa das savanas, cerrados e florestas abertas da América Tropical. Diversos produtos podem ser obtidos a partir desta palmeira, destacando-se a polpa do seu fruto que apresenta um grande potencial como alimento nutritivo por ser fonte natural de ß-caroteno, vitamina A e minerais. A macaúba pode ser consumida in natura ou na forma de pó, sendo que este pode ser utilizado como matéria-prima nas formulações de diversos produtos. A obtenção do pó pode ser a partir de diferentes técnicas de secagens sendo que alguns destes processos causam grande perda na qualidade (nutricional e sensorial) do produto final. Por este motivo, o conhecimento das propriedades da polpa integral e do pó da polpa de macaúba é importante para a valorização dos frutos regionais, além de abordar os processos de secagem para melhor conservação, desenvolvimento de ingredientes e preparo de diversos tipos de alimentos. Aplicação de dois processos de secagem, liofilização e desidratação em estufa, para obtenção dos pós de macaúba e avaliação física, físico-química, componentes bioativos e comportamento higroscópico das polpas e pós, e avaliar a estabilidade dos parâmetros de qualidade das polpas desidratadas durante 120 dias de armazenamento em diferentes embalagens. Os frutos de macaúba foram colhidos na Chapada do Araripe na Região do Cariri - CE nos meses de dezembro/2010 a março/2011 e encaminhados ao Laboratório de Controle de Qualidade de Alimentos e Secagem da Universidade Federal do Ceará - UFC. Os frutos foram selecionados de acordo com o grau de maturidade e sanidade e depois higienizados para o descascamento, em seguida, a polpa foi separada com auxílio de faca de aço inoxidável. Toda a polpa obtida foi homogeneizada, triturada e separadas em embalagens plásticas contendo 100 g da polpa. Inicialmente foi realizada a caracterização do fruto, no que concerne a: taxa respiratória, análises físico-químicas e mineral. Posteriormente, foram realizadas análises nas polpas, as quais foram separadas em dois lotes: polpa integral (PI) e polpa com adição de 8% de maltodextrina (PM). Foram elaboradas quatro pós da polpa de macaúba pelos seguintes processos: secagem em estufa com circulação de ar a 65°C por 25 horas: T1 (sem adição de maltodextrina) e T2 (com adição de 8% da maltodextrina); secagem em liofilizador por 25 horas: T3 (sem adição de maltodextrina) e T4 (com adição de 8% da maltodextrina). Foram realizadas analises físicas: atividade de água, cor, isotermas de adsorção, higroscopicidade e grau de caking; físico-químicas: umidade, pH, acidez titulável, sólidos solúveis; componentes bioativos: fenólicos totais, flavonoides amarelos, vitamina C, ß-caroteno e vitamina A. Para o estudo da estabilidade dos parâmetros de qualidade, cada tratamento foi acondicionado em diferentes embalagens: Plástica - P; Laminada - L e Laminada com fechamento a vácuo - LV. Posteriormente, foram armazenadas em temperatura ambiente (±25°C) por 120 dias e analisadas a cada 30 dias, realizando-se as seguintes determinações: umidade, atividade de água, cor, ß-caroteno, fenólicos totais e flavonoides amarelo. Os dados foram analisados estatisticamente por meio da análise de variância (ANOVA), e as diferenças entre as médias foram determinadas pelo teste de Tukey a 5% de probabilidade. A avaliação da fruta fresca demonstrou uma taxa de respiração de 74,45 mL CO2 Kg-1 h-1. Teores elevados foram encontrados para os açúcares, sólidos solúveis, pH, aw, lipídios e carotenóides totais, no entanto a polpa apresentou baixa acidez, umidade e cinzas. O potássio (K) foi o mineral de maior valor encontrado, seguido do magnésio (Mg) e do cálcio (Ca), sendo o zinco (Zn) o mineral de menor teor. Os resultados obtidos para as polpas da macaúba apresentaram elevados teores nas concentrações de ß-caroteno e vitamina A, demonstrando baixa umidade e acidez, um elevado aw e teor de sólidos solúveis, caracterizando-se como um produto adocicado. As polpas deste estudo apresentaram coloração laranja, sendo que a PI apresentou uma coloração laranja mais intensa que a PM. Os compostos bioativos dos pós dos tratamentos T3 e T4 obtiveram os maiores teores dos fenólicos, vitamina C, ?-caroteno e vitamina A, mostrando que a liofilização foi melhor na retenção destes bioativos. Entretanto os teores de flavonóides os T1 e T2 apresentaram valores superiores aos T3 e T4. O tratamento que melhor reduziu a umidade e aw foi o T3,entretanto para todas as secagens realizadas foram obtidos teores de umidade e aw reduzidos, proporcionando a inibição do crescimento microbiano. O pó que apresentou o parâmetro L* mais escuro foi o T2, e as cromaticidades a* e b* o T3 foi o que apresentou a cor amarelo mais saturada seguido do T4, demonstrando assim uma coloração mais atrativa. Os resultados das isotermas de adsorção demonstraram que todos os modelos estudados se ajustaram aos pós da macaúba desidratados na estufa e no liofilizador. As isotermas de adsorção foram classificadas como do Tipo III. Os valores obtidos para higroscopicidade foram: 6,39 e 5,17% e grau de caking 3,11 e 0,03% para o T1 e T2, respectivamente. Os valores obtidos para higroscopicidade foram 7,68 e 6,86% e grau de caking 0,33 e 0,09% para o T3 e T4, respectivamente. O modelo GAB melhor representou o comportamento das isotermas para os pós T1 e T3, e o modelo Oswin para o T2 e T4. No estudo da estabilidade dos compostos bioativos e parâmetros de qualidade dos pós da macaúba analisados durante 120 dias de armazenamento em temperatura ambiente (± 25°C) foram obtidos os seguintes resultados: A umidade e atividade de água durante o tempo de armazenamento, para todos os tratamentos e embalagens, obtiveram um aumento gradativo, exceto para a atividade de água nos T1 e T2 acondicionados nas embalagens LV. Ao final dos 120 dias de armazenamento, todos os tratamentos armazenados na embalagem plástica - P e o tratamento T1 embalagem - L extrapolaram o máximo permitido pela legislação para a umidade. Na avaliação da cor, o T1 foi o tratamento que apresentou alterações mais visíveis em sua luminosidade (L*) das amostras até o final do perimento. Os valores encontrados para a coordenada -a* foram baixos, demonstrando uma tonalidade acinzentada no pó, essa coordenada sofreu uma redução não significativa durante o tempo de armazenamento. A cromaticidade +b* do pó da macaúba em todos os tratamentos apresentaram tonalidade amarela, sendo os T3 e T4 sua cor mais saturada em relação ao tratamento T1 e T2. O tipo de desidratação influenciou na quantidade do ß-caroteno, os tratamentos T3 e T4 apresentaram teores maiores em relação aos pós secos em estufa T1 e T2, outro fator que influenciou nesta determinação foi a adição da maltodextrina. Durante o tempo de armazenamento o ß-caroteno sofreu degradação independente do tratamento e embalagem utilizada. O tempo de armazenamento em cada tratamento demonstrou uma redução dos teores dos fenólicos ao final dos 120 dias. Todos os tratamentos apresentaram uma leve oscilação nos valores dos flavonóides e aumento ao final dos 120 dias de armazenamento. O fruto possui alta taxa respiratória e, desta forma, recomenda-se processamento das polpa para aumentar o tempo de vida útil do produto da macaúba. A polpa da macaúba demonstrou ser adocicado, de baixa acidez, de coloração laranja e com excelentes teores dos componentes bioativos, com destaque para os teores de ß-caroteno. As isotermas de adsorção dos pós da macaúba podem ser classificados como do Tipo III. A macaúba em pó é classificada como um produto não higroscópico e não formador de caking. O melhor processo de secagem deste estudo é a liofilização. A melhor condição de conservação do pó da macaúba durante o tempo de armazenamento na temperatura ambiente (±25°C) é a liofilização sem adição de maltodextrina (T3) e armazenamento na embalagem laminada a vácuo (LV). Desta forma, a macaúba pode ser considerada uma alternativa para o enriquecimento da dieta e suplementação alimentar.84 fUniversidade Estadual de MaringáBrasilPrograma de Pós-Graduação em Ciência de AlimentosUEMMaringá, PRCentro de Ciências AgráriasEdmar ClementeOliveira, Dalany Menezes2018-04-05T17:32:31Z2018-04-05T17:32:31Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://repositorio.uem.br:8080/jspui/handle/1/1434ark:/35916/0013000002z11porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-04-05T17:32:31Zoai:localhost:1/1434Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:54:22.390129Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em pó
title Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em pó
spellingShingle Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em pó
Oliveira, Dalany Menezes
Acrocomia aculeata
Secagem
Liofilização
ß-caroteno
Macaúba
Suplementação alimentar
Brasil.
Acrocomia aculeata
Drying
Lyophilization
beta-carotene
Macaúba
Supplementary feeding
Brazil.
Ciências Agrárias
Ciência e Tecnologia de Alimentos
title_short Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em pó
title_full Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em pó
title_fullStr Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em pó
title_full_unstemmed Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em pó
title_sort Aplicação de diferentes métodos de secagem para obtenção de macaúba (Acrocomia aculeata) em pó
author Oliveira, Dalany Menezes
author_facet Oliveira, Dalany Menezes
author_role author
dc.contributor.none.fl_str_mv Edmar Clemente
dc.contributor.author.fl_str_mv Oliveira, Dalany Menezes
dc.subject.por.fl_str_mv Acrocomia aculeata
Secagem
Liofilização
ß-caroteno
Macaúba
Suplementação alimentar
Brasil.
Acrocomia aculeata
Drying
Lyophilization
beta-carotene
Macaúba
Supplementary feeding
Brazil.
Ciências Agrárias
Ciência e Tecnologia de Alimentos
topic Acrocomia aculeata
Secagem
Liofilização
ß-caroteno
Macaúba
Suplementação alimentar
Brasil.
Acrocomia aculeata
Drying
Lyophilization
beta-carotene
Macaúba
Supplementary feeding
Brazil.
Ciências Agrárias
Ciência e Tecnologia de Alimentos
description Grugru palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) is native to the savannas, open woodlands and 'cerrados' in tropical America. Several products can be obtained from such palm, especially the fruit pulp with great nutritional potential once it is a natural source of ß-carotene, vitamin A and minerals. Grugru palm fruits can be consumed fresh or in powder form, they can also be used as raw material for formulations many products formulations. The powder can be obtained by different drying techniques, but some of these processes cause a large quality loss (nutritional and sensory) in the final product. For this reason, knowing the properties of the grugru palm pulp and powder is important for adding value to the regional fruits and approaching the drying processes for better conservation, development of products and preparation of various types of food. AIMS. Application of two drying processes, lyophilization and oven dehydration in order to obtain grugru palm powder, carry out physical and hysicochemical evaluations, determine bioactive components and both pulp and powder hygroscopic behavior to finally evaluate the stability of quality parameters for the dehydrated product stored for 120 days in different packages. The grugru palm fruits were harvested in the Araripe Plateau of Cariri area, State of Ceara, Brazil, and then taken to the Laboratory of Food Quality Control and Drying of Federal University of Ceará (UFC) the fruits were selected according to both ripeness and sanity rates to be soon sanitized and peeled, the pulp was then set apart by the use of a knife and stainless steel. All the obtained pulp was homogenised, grinded and divided in plastic packages containing 100g pulp. Initially, the product characterization was conducted concerning respiratory rate, physical, chemical and mineral analysis. Later on, the analyses on the pulp were performed, handled to form two types of pulp: integral pulp (IP) and pulp with 8% maltodextrin (MP). Four grugru palm powders were prepared using the following processes: oven drying with air circulation at 65° C for 25 hours, without maltodextrin (T1) and with 8% of maltodextrin (T2); lyophilization for 25 hours, without maltodextrin (T3) and with 8% of maltodextrin (T4). Physical analyses were conducted on: water activity, color, adsorption isotherms, hygroscopicity and degree of caking; Physcochemical analyses were conducted on: moisture, pH, tritable acidity, soluble solids; Bioactive components: total phenolic, yellow flavonoids, vitamin C, ß-carotene and vitamin A. While studying the stability of quality parameters, each treatment was placed in different packages: plastic - P; laminated - L; laminated and vacuum closed - LV. Subsequently, the packages were stored at room temperature (± 25° C) for 120 days and analyzed every 30 days for the following determinations: moisture, water activity, color, ß-carotene, total phenolics and yellow flavonoids. Data were statistically analyzed through the analysis of variance (ANOVA), the differences between the averages were determined by the Tukey test at 5% probability. The fresh fruit evaluation revealed a respiration rate of 74.45 ml CO2.kg-1. h-1. High levels of sugars, soluble solids, pH, aw, lipids and carotenoids were found; however, the pulp showed low levels of acidity, moisture and ashes. Potassium (K) presented the highest content, followed by magnesium (Mg) and calcium (Ca); zinc (Zn) showed the lowest content. The results also showed high contents of ß-carotene and vitamin A, high levels of water activity and soluble solids, low level of moisture and acidity in the grugru palm pulp, characterizing it as a sweet product. The pulps in this study showed an orange color, and the IP showed a more intense orange color than that from MP. The T3 and T4 treatments presented the highest levels of the bioactive compounds: phenolics, vitamin C, ß-carotene and vitamin A, indicating that lyophilization was better in holding these compounds. However, both T1 and T2 levels of flavonoids showed higher values than those of T3 and T4. The best treatment in reducing moisture and water activity (aw) was T3, but all drying methods reduced moisture and aw levels, thus providing the inhibition of microbial growth. The T2 powder showed the darkest L* parameter, and the chromaticities a* and b* of T3 presented the most saturated yellow color followed by T4, revealing more attractive colors. The adsorption isotherms results showed that all models studied were fitted to the grugru palm powder dehydrated in oven and lyophilization. The adsorption isotherms were classified as Type III. The values for hygroscopic behaviors were 6.39 and 5.17% and for degree of caking were 3.11 and 0.03% for T1 and T2, respectively. The values for hygroscopic behaviors were 7.68 and 6.86% and for degree of caking 0.33 and 0.09% for T3 and T4, respectively. The GAB model was the best at representing isotherms behavior in T1 and T3, and the Oswin model in T2 and T4. For stability study on bioactive compounds and the quality parameters for grugru palm powder analyzed each 30 days during 120 days of storage at room temperature (± 25° C), the following results were obtained: the moisture content and water activity for all treatments and packages presented a gradual increase, except for water activity in T1 and T2 packed in LV. At the end of 120 days of storage, all treatments stored in plastic bags (P) and T1 stored in laminated packs surpassed the maximum moisture allowed by the legislation. In the color evaluation, T1 showed the most visible changes in brightness (L*) at the end of the experiment. The values for -a* coordinate were low, presenting a grayish hue for the powder; this coordinate showed no significant decrease during the storage period. The chromaticity +b* showed a yellow hue for the powder for all treatments, being T3 and T4 more saturated than T1 and T2. The dehydration method affected the content of ß-carotene: T3 and T4 ß-carotene concentrations were higher than those from oven dehydration (T1 and T2); another factor that influenced the ß-carotene content was the addition of maltodextrin. During the storage period, the ß-carotene has degraded regardless of both treatment and packaging. The phenolic contents presented a decrease at the end of the storage period. All treatments showed a slight fluctuation in the flavonoids values and a raise at the end of 120 days of storage. The grugru palm fruit has a high respiratory rate, therefore the pulp processing is recommended in order to increase the product shelf life. Grugru palm pulp proved to be a sweet fruit, presenting low acidity, orange color and excellent levels of bioactive components, particularly the levels of ß-carotene. The adsorption isotherms of grugru palm powders can be classified as Type III. This powder is regarded as a nonhygroscopic and non-caking product. The best drying process in this study was lyophilization. The best conservation of grugru palm powder at room temperature (± 25° C) is lyophilization without maltodextrin (T3) and storage in laminated and vacuum closed packages (LV). This way, grugru palm can be regarded as an alternative for food enrichment and supplement.
publishDate 2013
dc.date.none.fl_str_mv 2013
2018-04-05T17:32:31Z
2018-04-05T17:32:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.uem.br:8080/jspui/handle/1/1434
dc.identifier.dark.fl_str_mv ark:/35916/0013000002z11
url http://repositorio.uem.br:8080/jspui/handle/1/1434
identifier_str_mv ark:/35916/0013000002z11
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Programa de Pós-Graduação em Ciência de Alimentos
UEM
Maringá, PR
Centro de Ciências Agrárias
publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Programa de Pós-Graduação em Ciência de Alimentos
UEM
Maringá, PR
Centro de Ciências Agrárias
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
collection Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository.name.fl_str_mv Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv
_version_ 1818158795183882240