Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanol

Detalhes bibliográficos
Autor(a) principal: Furtado, Andréia Cristina
Data de Publicação: 2009
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
Texto Completo: http://repositorio.uem.br:8080/jspui/handle/1/3691
Resumo: Catalysts were synthesized and selected for the ethanol steam reforming and oxidative reforming reactions. The work was divided into two stages: the first was made to select the best active phase, which was used, in the second stage, in the selection of the best support. The best active phase/support combination should maximize hydrogen production and minimize the occurrence of parallel reactions, which lead to unwanted products. The catalysts were prepared by excess solvent impregnation of precursor salts on the support, followed by drying, pressing, calcination, grounding and sieving, resulting in particles with average diameter between 0.4 mm and 0.8 mm. The catalysts synthesized in the first stage were Me-Cu bimetallic catalysts (Me = Ni, Pt, and Pd) supported in g-Al2O3 and a-Al2O3 phases. In the second stage, the main focus was on the influence of different supports (ZnO, Nb2O5, and CexZr1-xO2) on the catalytic process of the ethanol reforming. The amounts of precursor salts were determined in order to obtain, after calcination, catalysts with nominal mass fractions of metals Ni, Cu, Pt, and Pd equal to 10%, 1%, 2%, and 3%, respectively. The metal precursors used were Ni(NO3)2.6H2O, Cu(NO3)2.3H2O, H2PtCl6.6H2O, and PdCl2. The catalysts were characterized by TPR, XRD, BET surface area, atomic absorption, TPD-NH3, isopropanol decomposition reaction, and DRS in the UV-vis range. The supports were submitted to thermogravimetric analysis and differential scanning calorimetry. The catalysts containing nickel had the metal surface area, metal dispersion, and metal particle size determined by TPD-H2. The catalytic tests of ethanol steam reforming were performed at atmospheric pressure and temperature of 400 oC with 2.5 g of catalyst. The analysis of the first stage results pointed to the Ni-Cu active phase as the most suitable for hydrogen production. Moreover, the production of gas was higher using a feed molar ratio of liquid reagents H2O/C2H5OH equal to 10 and space velocity fixed in 70 dm3/h.gcat (after vaporization). On the second stage, different supports were analyzed with the same active fase, 10% Ni-1% Cu, selected in the first stage. Ni- Cu/Ce0,6Zr0,4O2 was found to be the most active and selective catalyst for hydrogen production from ethanol steam reforming reaction. The other products were minimized by the reduction of unwanted reactions. Moreover, the catalyst was very stable for hydrogen production over the 8 h of reaction. As for the other catalysts, the yield of unwanted products was higher. Hydrogen production occurred preferentially by reactions such as ethanol dehydrogenation to acetaldehyde and ethanol decomposition. The results also showed the strong influence of catalyst acidity on the distribution of products. The presence of ethylene and diethyl ether was attributed to acid sites on the catalytic surface. The activity of the catalysts was also evaluated in the ethanol oxidative reforming, with O2/C2H5OH equal to 0.8. The incorporation of oxygen clearly reduced the efficiency of the Ni-Cu/Ce0,6Zr0,4O2 catalyst. The decrease in performance was marked by a strong catalyst deactivation, a reduction in hydrogen production, and a strong elevation in the amount of products from the oxidation reaction. In general, the addition of oxygen to the reagent mixture caused a reduction in hydrogen production when compared to the ethanol steam reforming, independent of the catalyst.
id UEM-10_6989b2b7ca750cfa644006ea8c6cdee7
oai_identifier_str oai:localhost:1/3691
network_acronym_str UEM-10
network_name_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository_id_str
spelling Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanolHidrogênioProduçãoReforma de etanolVapor d'águaReforma oxidativa de etanolCatalisadorAvaliaçãoSuporteFase ativaBrasil.EngenhariasEngenharia QuímicaCatalysts were synthesized and selected for the ethanol steam reforming and oxidative reforming reactions. The work was divided into two stages: the first was made to select the best active phase, which was used, in the second stage, in the selection of the best support. The best active phase/support combination should maximize hydrogen production and minimize the occurrence of parallel reactions, which lead to unwanted products. The catalysts were prepared by excess solvent impregnation of precursor salts on the support, followed by drying, pressing, calcination, grounding and sieving, resulting in particles with average diameter between 0.4 mm and 0.8 mm. The catalysts synthesized in the first stage were Me-Cu bimetallic catalysts (Me = Ni, Pt, and Pd) supported in g-Al2O3 and a-Al2O3 phases. In the second stage, the main focus was on the influence of different supports (ZnO, Nb2O5, and CexZr1-xO2) on the catalytic process of the ethanol reforming. The amounts of precursor salts were determined in order to obtain, after calcination, catalysts with nominal mass fractions of metals Ni, Cu, Pt, and Pd equal to 10%, 1%, 2%, and 3%, respectively. The metal precursors used were Ni(NO3)2.6H2O, Cu(NO3)2.3H2O, H2PtCl6.6H2O, and PdCl2. The catalysts were characterized by TPR, XRD, BET surface area, atomic absorption, TPD-NH3, isopropanol decomposition reaction, and DRS in the UV-vis range. The supports were submitted to thermogravimetric analysis and differential scanning calorimetry. The catalysts containing nickel had the metal surface area, metal dispersion, and metal particle size determined by TPD-H2. The catalytic tests of ethanol steam reforming were performed at atmospheric pressure and temperature of 400 oC with 2.5 g of catalyst. The analysis of the first stage results pointed to the Ni-Cu active phase as the most suitable for hydrogen production. Moreover, the production of gas was higher using a feed molar ratio of liquid reagents H2O/C2H5OH equal to 10 and space velocity fixed in 70 dm3/h.gcat (after vaporization). On the second stage, different supports were analyzed with the same active fase, 10% Ni-1% Cu, selected in the first stage. Ni- Cu/Ce0,6Zr0,4O2 was found to be the most active and selective catalyst for hydrogen production from ethanol steam reforming reaction. The other products were minimized by the reduction of unwanted reactions. Moreover, the catalyst was very stable for hydrogen production over the 8 h of reaction. As for the other catalysts, the yield of unwanted products was higher. Hydrogen production occurred preferentially by reactions such as ethanol dehydrogenation to acetaldehyde and ethanol decomposition. The results also showed the strong influence of catalyst acidity on the distribution of products. The presence of ethylene and diethyl ether was attributed to acid sites on the catalytic surface. The activity of the catalysts was also evaluated in the ethanol oxidative reforming, with O2/C2H5OH equal to 0.8. The incorporation of oxygen clearly reduced the efficiency of the Ni-Cu/Ce0,6Zr0,4O2 catalyst. The decrease in performance was marked by a strong catalyst deactivation, a reduction in hydrogen production, and a strong elevation in the amount of products from the oxidation reaction. In general, the addition of oxygen to the reagent mixture caused a reduction in hydrogen production when compared to the ethanol steam reforming, independent of the catalyst.Catalisadores foram sintetizados e selecionados para as reações de reforma com vapor d'gua e reforma oxidativa do etanol. O trabalho foi dividido em duas etapas: na primeira foi realizada a seleção da melhor fase ativa, enquanto na fase posterior, esta foi utilizada na seleção do melhor suporte, cujo conjunto fosse responsável por maximizar a produção do hidrogênio, ao mesmo tempo em que minimizasse a ocorrência de reações paralelas, que levam a produtos indesejados. Os catalisadores foram preparados pelo método da impregnação, com excesso de solvente, dos sais precursores sobre o suporte, seguida pela secagem, prensagem e empastilhamento, calcinação, trituração e peneiramento, resultando em partículas de catalisadores com diâmetro médio entre 0,4 mm e 0,8 mm. Os catalisadores sintetizados na primeira etapa foram catalisadores bimetálicos Me-Cu (Me = Ni, Pt e Pd) suportados nas fases g-Al2O3 e a- Al2O3. Na segunda etapa, o foco principal foi a influência de diferentes suportes (ZnO, Nb2O5 e CexZr1-xO2) no processo catalítico da reação de reforma do etanol. A massa dos sais utilizada foi determinada de modo a se obter, após a calcinação, catalisadores com frações mássicas nominais dos metais Ni, Cu, Pt e Pd iguais a 10%, 1%, 2% e 3%, respectivamente. Os precursores metálicos utilizados foram o Ni(NO3)2.6H2O, Cu(NO3)2.3H2O, H2PtCl6.6H2O e o PdCl2. Os catalisadores foram caracterizados por RTP, DRX, área superficial BET, absorção atômica, DTP-NH3, reação de decomposição do isopropanol, DRS no UV-vis. Os suportes foram submetidos a análises termogravimétricas e calorimetria exploratória diferencial. Catalisadores contendo níquel tiveram a área superficial do metal bem como sua dispersão e tamanho de partícula determinadas por DTP-H2. Os testes catalíticos de reforma do etanol com vapor d'água foram realizados à pressão atmosférica e temperatura de 400 oC com 2,5 g de catalisador. A análise dos resultados da primeira etapa apontou a fase ativa composta pelo Ni como a mais adequada para a produção do hidrogênio. Além disso, a produção do gás é mais elevada mediante a utilização de uma alimentação com razão molar dos reagentes líquidos H2O/C2H5OH igual a 10 e velocidade espacial fixada em 70 dm3/h.gcat (após vaporização). Na segunda etapa foram analisados diferentes suportes mantendo como fase ativa 10% Ni-1% Cu, selecionada na primeira etapa. Os resultados apontaram o catalisador Ni-Cu/Ce0,6Zr0,4O2 como o mais ativo e seletivo para produção do hidrogênio a partir da reação de reforma de etanol com vapor d'água. A quantidade dos demais produtos foi minimizada devido à redução da ocorrência de reações indesejadas. Além disso, o catalisador se mostrou bastante estável ao longo das 8 h analisadas para a produção do H2. Nos demais catalisadores, o rendimento para os produtos indesejados foi superior. A produção do hidrogênio se deu preferencialmente por reações como a desidrogenação do etanol para acetaldeído e a decomposição do etanol. Os resultados também mostraram a forte influência da acidez catalítica na distribuição dos produtos. A presença do etileno e do éter dietílico foi atribuída a sítios ácidos dispostos na superfície catalítica. A atividade dos catalisadores também foi avaliada na reforma oxidativa do etanol, com razão O2/C2H5OH igual a 0,8. A incorporação do oxigênio claramente reduziu a eficiência do catalisador Ni-Cu/Ce0,6Zr0,4O2. A queda no desempenho foi marcada por uma acentuada desativação catalítica, redução na produção do hidrogênio e elevação acentuada na quantidade dos produtos oriundos da reação de oxidação. Em geral, a adição do oxigênio à mistura reagente provocou uma redução na produção do hidrogênio, quando comparada à reação de reforma de etanol com vapor d'água, independente do catalisador.xvi, 188 fUniversidade Estadual de MaringáBrasilPrograma de Pós-Graduação em Engenharia QuímicaUEMMaringá, PRDepartamento de Engenharia QuímicaNádia Regina Camargo Fernandes MachadoFlávio Faria de Moraes - UEMMárcio Schwaab - UFSMMaurício Pereia Cantão - Centro Politécnico - UFPRDenise Maria Malachini Miotto Bigatão - UEMFurtado, Andréia Cristina2018-04-17T17:39:59Z2018-04-17T17:39:59Z2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://repositorio.uem.br:8080/jspui/handle/1/3691porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2024-01-10T22:18:53Zoai:localhost:1/3691Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:56:50.574834Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanol
title Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanol
spellingShingle Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanol
Furtado, Andréia Cristina
Hidrogênio
Produção
Reforma de etanol
Vapor d'água
Reforma oxidativa de etanol
Catalisador
Avaliação
Suporte
Fase ativa
Brasil.
Engenharias
Engenharia Química
title_short Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanol
title_full Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanol
title_fullStr Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanol
title_full_unstemmed Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanol
title_sort Síntese e avaliação de catalisadores para a produção de hidrogênio a partir das reações de reforma com vapor d?água e reforma oxidativa do etanol
author Furtado, Andréia Cristina
author_facet Furtado, Andréia Cristina
author_role author
dc.contributor.none.fl_str_mv Nádia Regina Camargo Fernandes Machado
Flávio Faria de Moraes - UEM
Márcio Schwaab - UFSM
Maurício Pereia Cantão - Centro Politécnico - UFPR
Denise Maria Malachini Miotto Bigatão - UEM
dc.contributor.author.fl_str_mv Furtado, Andréia Cristina
dc.subject.por.fl_str_mv Hidrogênio
Produção
Reforma de etanol
Vapor d'água
Reforma oxidativa de etanol
Catalisador
Avaliação
Suporte
Fase ativa
Brasil.
Engenharias
Engenharia Química
topic Hidrogênio
Produção
Reforma de etanol
Vapor d'água
Reforma oxidativa de etanol
Catalisador
Avaliação
Suporte
Fase ativa
Brasil.
Engenharias
Engenharia Química
description Catalysts were synthesized and selected for the ethanol steam reforming and oxidative reforming reactions. The work was divided into two stages: the first was made to select the best active phase, which was used, in the second stage, in the selection of the best support. The best active phase/support combination should maximize hydrogen production and minimize the occurrence of parallel reactions, which lead to unwanted products. The catalysts were prepared by excess solvent impregnation of precursor salts on the support, followed by drying, pressing, calcination, grounding and sieving, resulting in particles with average diameter between 0.4 mm and 0.8 mm. The catalysts synthesized in the first stage were Me-Cu bimetallic catalysts (Me = Ni, Pt, and Pd) supported in g-Al2O3 and a-Al2O3 phases. In the second stage, the main focus was on the influence of different supports (ZnO, Nb2O5, and CexZr1-xO2) on the catalytic process of the ethanol reforming. The amounts of precursor salts were determined in order to obtain, after calcination, catalysts with nominal mass fractions of metals Ni, Cu, Pt, and Pd equal to 10%, 1%, 2%, and 3%, respectively. The metal precursors used were Ni(NO3)2.6H2O, Cu(NO3)2.3H2O, H2PtCl6.6H2O, and PdCl2. The catalysts were characterized by TPR, XRD, BET surface area, atomic absorption, TPD-NH3, isopropanol decomposition reaction, and DRS in the UV-vis range. The supports were submitted to thermogravimetric analysis and differential scanning calorimetry. The catalysts containing nickel had the metal surface area, metal dispersion, and metal particle size determined by TPD-H2. The catalytic tests of ethanol steam reforming were performed at atmospheric pressure and temperature of 400 oC with 2.5 g of catalyst. The analysis of the first stage results pointed to the Ni-Cu active phase as the most suitable for hydrogen production. Moreover, the production of gas was higher using a feed molar ratio of liquid reagents H2O/C2H5OH equal to 10 and space velocity fixed in 70 dm3/h.gcat (after vaporization). On the second stage, different supports were analyzed with the same active fase, 10% Ni-1% Cu, selected in the first stage. Ni- Cu/Ce0,6Zr0,4O2 was found to be the most active and selective catalyst for hydrogen production from ethanol steam reforming reaction. The other products were minimized by the reduction of unwanted reactions. Moreover, the catalyst was very stable for hydrogen production over the 8 h of reaction. As for the other catalysts, the yield of unwanted products was higher. Hydrogen production occurred preferentially by reactions such as ethanol dehydrogenation to acetaldehyde and ethanol decomposition. The results also showed the strong influence of catalyst acidity on the distribution of products. The presence of ethylene and diethyl ether was attributed to acid sites on the catalytic surface. The activity of the catalysts was also evaluated in the ethanol oxidative reforming, with O2/C2H5OH equal to 0.8. The incorporation of oxygen clearly reduced the efficiency of the Ni-Cu/Ce0,6Zr0,4O2 catalyst. The decrease in performance was marked by a strong catalyst deactivation, a reduction in hydrogen production, and a strong elevation in the amount of products from the oxidation reaction. In general, the addition of oxygen to the reagent mixture caused a reduction in hydrogen production when compared to the ethanol steam reforming, independent of the catalyst.
publishDate 2009
dc.date.none.fl_str_mv 2009
2018-04-17T17:39:59Z
2018-04-17T17:39:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.uem.br:8080/jspui/handle/1/3691
url http://repositorio.uem.br:8080/jspui/handle/1/3691
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Departamento de Engenharia Química
publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Departamento de Engenharia Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
collection Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository.name.fl_str_mv Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv
_version_ 1801841411241279488