Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
dARK ID: | ark:/35916/0013000002x0t |
Texto Completo: | http://repositorio.uem.br:8080/jspui/handle/1/1398 |
Resumo: | The cultivar protection is realized based on morphological, physiological and biochemical descriptions, characteristics sensitive to environmental variations. When self pollinating species with low genetic variability are considered, as soybean, the distinction between cultivars using the standard traits demands lots of effort and it?s not efficient. In this sense, one strategy to improve the characterization is to analyze directly the DNA. Molecular markers are ideal tools t perform this work, once they are not environmental sensitive and can be applied in any stage of plant development. Among molecular markers, microsatellites are distributed through all plant genome, specific, multiallelics and co-dominant. Therefore, by the above, this work aimed to develop a semi-automated system, by employing fluorescent SSR markers, that would allow genetically distinguish soybean cultivars. For this, forty ? eight soybean cultivars were selected in the germoplasm bank from Embrapa ? Soybean. Seed were germinated in pots and kept in green house until the first leaflet appearance (V3 stage) which was collected from each cultivar in a bulk methodology and storage in -80°C. Posteriorly, DNA extraction was done and analyzed using 23 pairs of microsatellites primers. Sense strains were labeled with blue (6FAM), green (HEX) or yellow (NED) fluorescence. The analyses from results fragments was carried out in a automatic sequencer ABI PRISM Genetic Analyser® 3100 (Applied Biosystem, Foster City, CA) and the software GeneMapper® (AB-PEC,Foster City, CA) was applied to visualize the alleles exactly and to emit data automatically. The electroferograms obtained allowed the identification informative loci and its alleles.In total of 201 alleles were observed, with an average of 8.73 alleles per loci. The most informative loci were Sat_038 and Satt009, with 12 alleles each and the less informative were Satt042, Satt045, Satt002 and Satt233 with six alleles each. The loci Sat_038, Satt612, Satt181, Satt540, Satt009 and Satt005 allowed the identification and differentiation of all group of the 48 soybean cultivars studied, being named loci differentiator. Based in these loci it was possible perform the identification of genotypes and consequently elaborate genetic tags. Such a system will be used in the characterization of new cultivars, assisting the protection procedure, as well as in cases to analyzed seed genetic purity when visual analyses were doubtful. |
id |
UEM-10_cab08160a46cb26ea030379b8a199783 |
---|---|
oai_identifier_str |
oai:localhost:1/1398 |
network_acronym_str |
UEM-10 |
network_name_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository_id_str |
|
spelling |
Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagemMolecular identification of soybean cultivars (Glycine max L. Merrill) with semi-automated system of genotyping by use SSR markersGlycine maxMicrossatélitesValidaçãoMarcadores molecularesEletroferogramaBrasil.Glycine maxMicrosatelliteValidationBrazil.Ciências AgráriasAgronomiaThe cultivar protection is realized based on morphological, physiological and biochemical descriptions, characteristics sensitive to environmental variations. When self pollinating species with low genetic variability are considered, as soybean, the distinction between cultivars using the standard traits demands lots of effort and it?s not efficient. In this sense, one strategy to improve the characterization is to analyze directly the DNA. Molecular markers are ideal tools t perform this work, once they are not environmental sensitive and can be applied in any stage of plant development. Among molecular markers, microsatellites are distributed through all plant genome, specific, multiallelics and co-dominant. Therefore, by the above, this work aimed to develop a semi-automated system, by employing fluorescent SSR markers, that would allow genetically distinguish soybean cultivars. For this, forty ? eight soybean cultivars were selected in the germoplasm bank from Embrapa ? Soybean. Seed were germinated in pots and kept in green house until the first leaflet appearance (V3 stage) which was collected from each cultivar in a bulk methodology and storage in -80°C. Posteriorly, DNA extraction was done and analyzed using 23 pairs of microsatellites primers. Sense strains were labeled with blue (6FAM), green (HEX) or yellow (NED) fluorescence. The analyses from results fragments was carried out in a automatic sequencer ABI PRISM Genetic Analyser® 3100 (Applied Biosystem, Foster City, CA) and the software GeneMapper® (AB-PEC,Foster City, CA) was applied to visualize the alleles exactly and to emit data automatically. The electroferograms obtained allowed the identification informative loci and its alleles.In total of 201 alleles were observed, with an average of 8.73 alleles per loci. The most informative loci were Sat_038 and Satt009, with 12 alleles each and the less informative were Satt042, Satt045, Satt002 and Satt233 with six alleles each. The loci Sat_038, Satt612, Satt181, Satt540, Satt009 and Satt005 allowed the identification and differentiation of all group of the 48 soybean cultivars studied, being named loci differentiator. Based in these loci it was possible perform the identification of genotypes and consequently elaborate genetic tags. Such a system will be used in the characterization of new cultivars, assisting the protection procedure, as well as in cases to analyzed seed genetic purity when visual analyses were doubtful.A proteção de cultivares é realizada atualmente com base em descrições morfológicas, fisiológicas e bioquímicas, características essas sensíveis às variações ambientais. Em se tratando de espécies autógamas e que apresentam baixa variabilidade genética, como no caso da soja, a distinção entre as cultivares utilizando os descritores citados acima demanda muito esforço e apresenta grandes limitações. Neste sentido, uma forma de se realizar a caracterização de um modo mais eficiente consiste na análise direta do DNA. Os marcadores moleculares são as ferramentas ideais para se realizar este tipo de abordagem, pois não são influenciados pelo ambiente e podem ser utilizados em qualquer estádio de desenvolvimento da planta. Dentre os marcadores moleculares, os microssatélites estão distribuídos ao longo de todo genoma, são específicos, multialélicos e co-dominantes. Este trabalho visou desenvolver um sistema semiautomatizado, pelo emprego de marcadores SSR fluorescentes, que permitisse distinguir geneticamente cultivares de soja. Para tanto, 48 cultivares de soja foram selecionadas no Banco de germoplasma da Embrapa-Soja. As sementes foram semeadas em vasos e mantidas em casa de vegetação até o surgimento do primeiro trifólio (estádio V3) os quais foram coletados de cada cultivar pelo método de bulk e armazenadas a -80ºC. Posteriormente, o DNA das amostras foi extraído e analisado utilizando, para tanto, 23 pares de primers microssatélites. As fitas senso dos primers selecionados foram marcadas com fluorescência azul (6FAM), verde (HEX), ou amarela (NED). As análises dos fragmentos gerados foram realizados em sequenciador automático ABI PRISM Genetic Analyser® 3100 (Applied Biosystem, Foster City, CA) e o software Genotyper® (AB-PEC, Foster City,CA) foi aplicado para a visualização exata dos alelos e para emissão de dados automaticamente. Os eletroferogramas obtidos permitiram a identificação dos loci mais informativos e de seus respectivos alelos. No total foram observados 201 alelos, com uma média de 8,73 alelos por locus. Os loci mais polimórficos foram Sat_038 e Satt009, com 12 alelos cada e os menos polimórficos foram Satt042, Satt045, Satt002 e Satt233, apresentando seis alelos cada. Os loci Sat_038, Satt612, Satt181, Satt540, Satt009 e Satt005 foram capazes de identificar e diferenciar todo o grupo de 48 cultivares de soja estudadas, sendo denominados de loci diferenciadores. Com base nesses loci foi possível realizar a identificação dos genótipos e, conseqüentemente, a elaboração das etiquetas genéticas dos mesmos. Tal sistema poderá ser utilizado para a caracterização de novas cultivares, auxiliando na proteção destas, bem como nos casos de análise de pureza genética de sementes em que a análise visual for duvidosa.xi, 50 fUniversidade Estadual de MaringáBrasilUEMMaringá, PRPrograma de Pós-Graduação em Genética e MelhoramentoAdriana GonelaMaria de Fátima Pires da Silva Machado - UEMFrancismar Corrêa Marcelino - EMBRAPAPassianotto, André Luiz de Lima2018-04-05T17:01:34Z2018-04-05T17:01:34Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://repositorio.uem.br:8080/jspui/handle/1/1398ark:/35916/0013000002x0tporinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2018-04-05T17:01:34Zoai:localhost:1/1398Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestopendoar:2024-04-23T14:54:20.092692Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagem Molecular identification of soybean cultivars (Glycine max L. Merrill) with semi-automated system of genotyping by use SSR markers |
title |
Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagem |
spellingShingle |
Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagem Passianotto, André Luiz de Lima Glycine max Microssatélites Validação Marcadores moleculares Eletroferograma Brasil. Glycine max Microsatellite Validation Brazil. Ciências Agrárias Agronomia |
title_short |
Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagem |
title_full |
Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagem |
title_fullStr |
Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagem |
title_full_unstemmed |
Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagem |
title_sort |
Identificação molecular de cultivares de soja (Glycine max L. Merrill) utilizando um sistema semi-automatizado de genotipagem |
author |
Passianotto, André Luiz de Lima |
author_facet |
Passianotto, André Luiz de Lima |
author_role |
author |
dc.contributor.none.fl_str_mv |
Adriana Gonela Maria de Fátima Pires da Silva Machado - UEM Francismar Corrêa Marcelino - EMBRAPA |
dc.contributor.author.fl_str_mv |
Passianotto, André Luiz de Lima |
dc.subject.por.fl_str_mv |
Glycine max Microssatélites Validação Marcadores moleculares Eletroferograma Brasil. Glycine max Microsatellite Validation Brazil. Ciências Agrárias Agronomia |
topic |
Glycine max Microssatélites Validação Marcadores moleculares Eletroferograma Brasil. Glycine max Microsatellite Validation Brazil. Ciências Agrárias Agronomia |
description |
The cultivar protection is realized based on morphological, physiological and biochemical descriptions, characteristics sensitive to environmental variations. When self pollinating species with low genetic variability are considered, as soybean, the distinction between cultivars using the standard traits demands lots of effort and it?s not efficient. In this sense, one strategy to improve the characterization is to analyze directly the DNA. Molecular markers are ideal tools t perform this work, once they are not environmental sensitive and can be applied in any stage of plant development. Among molecular markers, microsatellites are distributed through all plant genome, specific, multiallelics and co-dominant. Therefore, by the above, this work aimed to develop a semi-automated system, by employing fluorescent SSR markers, that would allow genetically distinguish soybean cultivars. For this, forty ? eight soybean cultivars were selected in the germoplasm bank from Embrapa ? Soybean. Seed were germinated in pots and kept in green house until the first leaflet appearance (V3 stage) which was collected from each cultivar in a bulk methodology and storage in -80°C. Posteriorly, DNA extraction was done and analyzed using 23 pairs of microsatellites primers. Sense strains were labeled with blue (6FAM), green (HEX) or yellow (NED) fluorescence. The analyses from results fragments was carried out in a automatic sequencer ABI PRISM Genetic Analyser® 3100 (Applied Biosystem, Foster City, CA) and the software GeneMapper® (AB-PEC,Foster City, CA) was applied to visualize the alleles exactly and to emit data automatically. The electroferograms obtained allowed the identification informative loci and its alleles.In total of 201 alleles were observed, with an average of 8.73 alleles per loci. The most informative loci were Sat_038 and Satt009, with 12 alleles each and the less informative were Satt042, Satt045, Satt002 and Satt233 with six alleles each. The loci Sat_038, Satt612, Satt181, Satt540, Satt009 and Satt005 allowed the identification and differentiation of all group of the 48 soybean cultivars studied, being named loci differentiator. Based in these loci it was possible perform the identification of genotypes and consequently elaborate genetic tags. Such a system will be used in the characterization of new cultivars, assisting the protection procedure, as well as in cases to analyzed seed genetic purity when visual analyses were doubtful. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2018-04-05T17:01:34Z 2018-04-05T17:01:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.uem.br:8080/jspui/handle/1/1398 |
dc.identifier.dark.fl_str_mv |
ark:/35916/0013000002x0t |
url |
http://repositorio.uem.br:8080/jspui/handle/1/1398 |
identifier_str_mv |
ark:/35916/0013000002x0t |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil UEM Maringá, PR Programa de Pós-Graduação em Genética e Melhoramento |
publisher.none.fl_str_mv |
Universidade Estadual de Maringá Brasil UEM Maringá, PR Programa de Pós-Graduação em Genética e Melhoramento |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
collection |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
|
_version_ |
1818158795060150272 |