Modeling asymmetric compositional data

Detalhes bibliográficos
Autor(a) principal: Martins, Ana Beatriz Tozzo
Data de Publicação: 2014
Outros Autores: Janeiro, Vanderly, Guedes, Terezinha Aparecida, Rossi, Robson Marcelo, Gonçalves, Antônio Carlos Andrade
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/20626
Resumo: Compositional data belong to the simplex sample space, but they are transformed to the sample space of the real numbers using the additive log-ratio transformation to allow the application of standard statistical techniques. This study aims to model compositional skewed data of three soil components after additive log-ratio transformation. The current modeling was done for compositional data of sand, silt and clay (simplex), and bivariate data (real) using the standard skew theory with and without the inclusion of the covariate soil porosity. The analyses were run using the R statistical software and the package sn, and the goodness-of-fit was found after applying the covariate. 
id UEM-6_3257fd711c91fc97a041aaad269f1e0c
oai_identifier_str oai:periodicos.uem.br/ojs:article/20626
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Modeling asymmetric compositional datacompositional dataskew-normal distributionparameter estimationprobabilidade e estatística aplicadasCompositional data belong to the simplex sample space, but they are transformed to the sample space of the real numbers using the additive log-ratio transformation to allow the application of standard statistical techniques. This study aims to model compositional skewed data of three soil components after additive log-ratio transformation. The current modeling was done for compositional data of sand, silt and clay (simplex), and bivariate data (real) using the standard skew theory with and without the inclusion of the covariate soil porosity. The analyses were run using the R statistical software and the package sn, and the goodness-of-fit was found after applying the covariate. Universidade Estadual De Maringá2014-04-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionmodelagemapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2062610.4025/actascitechnol.v36i2.20626Acta Scientiarum. Technology; Vol 36 No 2 (2014); 307-313Acta Scientiarum. Technology; v. 36 n. 2 (2014); 307-3131806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/20626/12663Martins, Ana Beatriz TozzoJaneiro, VanderlyGuedes, Terezinha AparecidaRossi, Robson MarceloGonçalves, Antônio Carlos Andradeinfo:eu-repo/semantics/openAccess2014-04-04T15:34:15Zoai:periodicos.uem.br/ojs:article/20626Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2014-04-04T15:34:15Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Modeling asymmetric compositional data
title Modeling asymmetric compositional data
spellingShingle Modeling asymmetric compositional data
Martins, Ana Beatriz Tozzo
compositional data
skew-normal distribution
parameter estimation
probabilidade e estatística aplicadas
title_short Modeling asymmetric compositional data
title_full Modeling asymmetric compositional data
title_fullStr Modeling asymmetric compositional data
title_full_unstemmed Modeling asymmetric compositional data
title_sort Modeling asymmetric compositional data
author Martins, Ana Beatriz Tozzo
author_facet Martins, Ana Beatriz Tozzo
Janeiro, Vanderly
Guedes, Terezinha Aparecida
Rossi, Robson Marcelo
Gonçalves, Antônio Carlos Andrade
author_role author
author2 Janeiro, Vanderly
Guedes, Terezinha Aparecida
Rossi, Robson Marcelo
Gonçalves, Antônio Carlos Andrade
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Martins, Ana Beatriz Tozzo
Janeiro, Vanderly
Guedes, Terezinha Aparecida
Rossi, Robson Marcelo
Gonçalves, Antônio Carlos Andrade
dc.subject.por.fl_str_mv compositional data
skew-normal distribution
parameter estimation
probabilidade e estatística aplicadas
topic compositional data
skew-normal distribution
parameter estimation
probabilidade e estatística aplicadas
description Compositional data belong to the simplex sample space, but they are transformed to the sample space of the real numbers using the additive log-ratio transformation to allow the application of standard statistical techniques. This study aims to model compositional skewed data of three soil components after additive log-ratio transformation. The current modeling was done for compositional data of sand, silt and clay (simplex), and bivariate data (real) using the standard skew theory with and without the inclusion of the covariate soil porosity. The analyses were run using the R statistical software and the package sn, and the goodness-of-fit was found after applying the covariate. 
publishDate 2014
dc.date.none.fl_str_mv 2014-04-04
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
modelagem
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/20626
10.4025/actascitechnol.v36i2.20626
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/20626
identifier_str_mv 10.4025/actascitechnol.v36i2.20626
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/20626/12663
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 36 No 2 (2014); 307-313
Acta Scientiarum. Technology; v. 36 n. 2 (2014); 307-313
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315335415857152