A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s00184-021-00815-4 http://hdl.handle.net/11449/221725 |
Resumo: | Skew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here. |
id |
UNSP_5955853e8b2310d409f2b1941d2c631e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/221725 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributionsBirnbaum–Saunders distributionEM algorithmNonlinear regression modelsRobust estimationSinh-normal distributionSkew-normal/independent distributionSkew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Departamento de Ingeniería Universidad del PacíficoDepartamento de Estatística Universidade Estadual de São PauloDepartamento de Estatística Universidade Estadual de CampinasDepartment of Mathematics and Statistics McMaster UniversityDepartamento de Estatística Universidade Estadual de São PauloCNPq: 309086/2009-4Universidad del PacíficoUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)McMaster UniversityMaehara, Rocío [UNESP]Bolfarine, Heleno [UNESP]Vilca, FilidorBalakrishnan, N.2022-04-28T19:40:06Z2022-04-28T19:40:06Z2021-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1049-1080http://dx.doi.org/10.1007/s00184-021-00815-4Metrika, v. 84, n. 7, p. 1049-1080, 2021.1435-926X0026-1335http://hdl.handle.net/11449/22172510.1007/s00184-021-00815-42-s2.0-85104588706Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMetrikainfo:eu-repo/semantics/openAccess2022-04-28T19:40:06Zoai:repositorio.unesp.br:11449/221725Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:21:02.928536Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions |
title |
A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions |
spellingShingle |
A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions Maehara, Rocío [UNESP] Birnbaum–Saunders distribution EM algorithm Nonlinear regression models Robust estimation Sinh-normal distribution Skew-normal/independent distribution |
title_short |
A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions |
title_full |
A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions |
title_fullStr |
A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions |
title_full_unstemmed |
A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions |
title_sort |
A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions |
author |
Maehara, Rocío [UNESP] |
author_facet |
Maehara, Rocío [UNESP] Bolfarine, Heleno [UNESP] Vilca, Filidor Balakrishnan, N. |
author_role |
author |
author2 |
Bolfarine, Heleno [UNESP] Vilca, Filidor Balakrishnan, N. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidad del Pacífico Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) McMaster University |
dc.contributor.author.fl_str_mv |
Maehara, Rocío [UNESP] Bolfarine, Heleno [UNESP] Vilca, Filidor Balakrishnan, N. |
dc.subject.por.fl_str_mv |
Birnbaum–Saunders distribution EM algorithm Nonlinear regression models Robust estimation Sinh-normal distribution Skew-normal/independent distribution |
topic |
Birnbaum–Saunders distribution EM algorithm Nonlinear regression models Robust estimation Sinh-normal distribution Skew-normal/independent distribution |
description |
Skew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-01 2022-04-28T19:40:06Z 2022-04-28T19:40:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00184-021-00815-4 Metrika, v. 84, n. 7, p. 1049-1080, 2021. 1435-926X 0026-1335 http://hdl.handle.net/11449/221725 10.1007/s00184-021-00815-4 2-s2.0-85104588706 |
url |
http://dx.doi.org/10.1007/s00184-021-00815-4 http://hdl.handle.net/11449/221725 |
identifier_str_mv |
Metrika, v. 84, n. 7, p. 1049-1080, 2021. 1435-926X 0026-1335 10.1007/s00184-021-00815-4 2-s2.0-85104588706 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Metrika |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1049-1080 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128501625126912 |