A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions

Detalhes bibliográficos
Autor(a) principal: Maehara, Rocío [UNESP]
Data de Publicação: 2021
Outros Autores: Bolfarine, Heleno [UNESP], Vilca, Filidor, Balakrishnan, N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00184-021-00815-4
http://hdl.handle.net/11449/221725
Resumo: Skew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here.
id UNSP_5955853e8b2310d409f2b1941d2c631e
oai_identifier_str oai:repositorio.unesp.br:11449/221725
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributionsBirnbaum–Saunders distributionEM algorithmNonlinear regression modelsRobust estimationSinh-normal distributionSkew-normal/independent distributionSkew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Departamento de Ingeniería Universidad del PacíficoDepartamento de Estatística Universidade Estadual de São PauloDepartamento de Estatística Universidade Estadual de CampinasDepartment of Mathematics and Statistics McMaster UniversityDepartamento de Estatística Universidade Estadual de São PauloCNPq: 309086/2009-4Universidad del PacíficoUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)McMaster UniversityMaehara, Rocío [UNESP]Bolfarine, Heleno [UNESP]Vilca, FilidorBalakrishnan, N.2022-04-28T19:40:06Z2022-04-28T19:40:06Z2021-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1049-1080http://dx.doi.org/10.1007/s00184-021-00815-4Metrika, v. 84, n. 7, p. 1049-1080, 2021.1435-926X0026-1335http://hdl.handle.net/11449/22172510.1007/s00184-021-00815-42-s2.0-85104588706Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMetrikainfo:eu-repo/semantics/openAccess2022-04-28T19:40:06Zoai:repositorio.unesp.br:11449/221725Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:21:02.928536Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
title A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
spellingShingle A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
Maehara, Rocío [UNESP]
Birnbaum–Saunders distribution
EM algorithm
Nonlinear regression models
Robust estimation
Sinh-normal distribution
Skew-normal/independent distribution
title_short A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
title_full A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
title_fullStr A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
title_full_unstemmed A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
title_sort A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
author Maehara, Rocío [UNESP]
author_facet Maehara, Rocío [UNESP]
Bolfarine, Heleno [UNESP]
Vilca, Filidor
Balakrishnan, N.
author_role author
author2 Bolfarine, Heleno [UNESP]
Vilca, Filidor
Balakrishnan, N.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidad del Pacífico
Universidade Estadual Paulista (UNESP)
Universidade Estadual de Campinas (UNICAMP)
McMaster University
dc.contributor.author.fl_str_mv Maehara, Rocío [UNESP]
Bolfarine, Heleno [UNESP]
Vilca, Filidor
Balakrishnan, N.
dc.subject.por.fl_str_mv Birnbaum–Saunders distribution
EM algorithm
Nonlinear regression models
Robust estimation
Sinh-normal distribution
Skew-normal/independent distribution
topic Birnbaum–Saunders distribution
EM algorithm
Nonlinear regression models
Robust estimation
Sinh-normal distribution
Skew-normal/independent distribution
description Skew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-01
2022-04-28T19:40:06Z
2022-04-28T19:40:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00184-021-00815-4
Metrika, v. 84, n. 7, p. 1049-1080, 2021.
1435-926X
0026-1335
http://hdl.handle.net/11449/221725
10.1007/s00184-021-00815-4
2-s2.0-85104588706
url http://dx.doi.org/10.1007/s00184-021-00815-4
http://hdl.handle.net/11449/221725
identifier_str_mv Metrika, v. 84, n. 7, p. 1049-1080, 2021.
1435-926X
0026-1335
10.1007/s00184-021-00815-4
2-s2.0-85104588706
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Metrika
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1049-1080
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128501625126912