Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194 |
Resumo: | This work aimed to apply genetic algorithms (GA) and particle swarm optimization (PSO) in cash balance management using Miller-Orr model, which consists in a stochastic model that does not define a single ideal point for cash balance, but an oscillation range between a lower bound, an ideal balance and an upper bound. Thus, this paper proposes the application of GA and PSO to minimize the Total Cost of cash maintenance, obtaining the parameter of the lower bound of the Miller-Orr model, using for this the assumptions presented in literature. Computational experiments were applied in the development and validation of the models. The results indicated that both the GA and PSO are applicable in determining the cash level from the lower limit, with best results of PSO model, which had not yet been applied in this type of problem. |
id |
UEM-6_a75f163374ce195e8fe813b7557b2953 |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/12194 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194optimizationcash flowevolutionary modelsEngenharia Financeira This work aimed to apply genetic algorithms (GA) and particle swarm optimization (PSO) in cash balance management using Miller-Orr model, which consists in a stochastic model that does not define a single ideal point for cash balance, but an oscillation range between a lower bound, an ideal balance and an upper bound. Thus, this paper proposes the application of GA and PSO to minimize the Total Cost of cash maintenance, obtaining the parameter of the lower bound of the Miller-Orr model, using for this the assumptions presented in literature. Computational experiments were applied in the development and validation of the models. The results indicated that both the GA and PSO are applicable in determining the cash level from the lower limit, with best results of PSO model, which had not yet been applied in this type of problem. Universidade Estadual De Maringá2012-05-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionexperimentação computacionalapplication/pdfapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1219410.4025/actascitechnol.v34i4.12194Acta Scientiarum. Technology; Vol 34 No 4 (2012); 373-379Acta Scientiarum. Technology; v. 34 n. 4 (2012); 373-3791806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194/pdf_1Moraes, Marcelo Botelho da CostaNagano, Marcelo Seidoinfo:eu-repo/semantics/openAccess2024-05-17T13:03:22Zoai:periodicos.uem.br/ojs:article/12194Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:03:22Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194 |
title |
Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194 |
spellingShingle |
Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194 Moraes, Marcelo Botelho da Costa optimization cash flow evolutionary models Engenharia Financeira |
title_short |
Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194 |
title_full |
Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194 |
title_fullStr |
Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194 |
title_full_unstemmed |
Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194 |
title_sort |
Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194 |
author |
Moraes, Marcelo Botelho da Costa |
author_facet |
Moraes, Marcelo Botelho da Costa Nagano, Marcelo Seido |
author_role |
author |
author2 |
Nagano, Marcelo Seido |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Moraes, Marcelo Botelho da Costa Nagano, Marcelo Seido |
dc.subject.por.fl_str_mv |
optimization cash flow evolutionary models Engenharia Financeira |
topic |
optimization cash flow evolutionary models Engenharia Financeira |
description |
This work aimed to apply genetic algorithms (GA) and particle swarm optimization (PSO) in cash balance management using Miller-Orr model, which consists in a stochastic model that does not define a single ideal point for cash balance, but an oscillation range between a lower bound, an ideal balance and an upper bound. Thus, this paper proposes the application of GA and PSO to minimize the Total Cost of cash maintenance, obtaining the parameter of the lower bound of the Miller-Orr model, using for this the assumptions presented in literature. Computational experiments were applied in the development and validation of the models. The results indicated that both the GA and PSO are applicable in determining the cash level from the lower limit, with best results of PSO model, which had not yet been applied in this type of problem. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05-31 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion experimentação computacional |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194 10.4025/actascitechnol.v34i4.12194 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194 |
identifier_str_mv |
10.4025/actascitechnol.v34i4.12194 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194/pdf http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194/pdf_1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 34 No 4 (2012); 373-379 Acta Scientiarum. Technology; v. 34 n. 4 (2012); 373-379 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315334319046656 |