Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194

Detalhes bibliográficos
Autor(a) principal: Moraes, Marcelo Botelho da Costa
Data de Publicação: 2012
Outros Autores: Nagano, Marcelo Seido
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194
Resumo: This work aimed to apply genetic algorithms (GA) and particle swarm optimization (PSO) in cash balance management using Miller-Orr model, which consists in a stochastic model that does not define a single ideal point for cash balance, but an oscillation range between a lower bound, an ideal balance and an upper bound. Thus, this paper proposes the application of GA and PSO to minimize the Total Cost of cash maintenance, obtaining the parameter of the lower bound of the Miller-Orr model, using for this the assumptions presented in literature. Computational experiments were applied in the development and validation of the models. The results indicated that both the GA and PSO are applicable in determining the cash level from the lower limit, with best results of PSO model, which had not yet been applied in this type of problem.
id UEM-6_a75f163374ce195e8fe813b7557b2953
oai_identifier_str oai:periodicos.uem.br/ojs:article/12194
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194optimizationcash flowevolutionary modelsEngenharia Financeira This work aimed to apply genetic algorithms (GA) and particle swarm optimization (PSO) in cash balance management using Miller-Orr model, which consists in a stochastic model that does not define a single ideal point for cash balance, but an oscillation range between a lower bound, an ideal balance and an upper bound. Thus, this paper proposes the application of GA and PSO to minimize the Total Cost of cash maintenance, obtaining the parameter of the lower bound of the Miller-Orr model, using for this the assumptions presented in literature. Computational experiments were applied in the development and validation of the models. The results indicated that both the GA and PSO are applicable in determining the cash level from the lower limit, with best results of PSO model, which had not yet been applied in this type of problem. Universidade Estadual De Maringá2012-05-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionexperimentação computacionalapplication/pdfapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/1219410.4025/actascitechnol.v34i4.12194Acta Scientiarum. Technology; Vol 34 No 4 (2012); 373-379Acta Scientiarum. Technology; v. 34 n. 4 (2012); 373-3791806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194/pdf_1Moraes, Marcelo Botelho da CostaNagano, Marcelo Seidoinfo:eu-repo/semantics/openAccess2024-05-17T13:03:22Zoai:periodicos.uem.br/ojs:article/12194Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:03:22Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194
title Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194
spellingShingle Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194
Moraes, Marcelo Botelho da Costa
optimization
cash flow
evolutionary models
Engenharia Financeira
title_short Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194
title_full Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194
title_fullStr Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194
title_full_unstemmed Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194
title_sort Cash balance management: A comparison between genetic algorithms and particle swarm optimization - doi: 10.4025/actascitechnol.v34i4.12194
author Moraes, Marcelo Botelho da Costa
author_facet Moraes, Marcelo Botelho da Costa
Nagano, Marcelo Seido
author_role author
author2 Nagano, Marcelo Seido
author2_role author
dc.contributor.author.fl_str_mv Moraes, Marcelo Botelho da Costa
Nagano, Marcelo Seido
dc.subject.por.fl_str_mv optimization
cash flow
evolutionary models
Engenharia Financeira
topic optimization
cash flow
evolutionary models
Engenharia Financeira
description This work aimed to apply genetic algorithms (GA) and particle swarm optimization (PSO) in cash balance management using Miller-Orr model, which consists in a stochastic model that does not define a single ideal point for cash balance, but an oscillation range between a lower bound, an ideal balance and an upper bound. Thus, this paper proposes the application of GA and PSO to minimize the Total Cost of cash maintenance, obtaining the parameter of the lower bound of the Miller-Orr model, using for this the assumptions presented in literature. Computational experiments were applied in the development and validation of the models. The results indicated that both the GA and PSO are applicable in determining the cash level from the lower limit, with best results of PSO model, which had not yet been applied in this type of problem.
publishDate 2012
dc.date.none.fl_str_mv 2012-05-31
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
experimentação computacional
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194
10.4025/actascitechnol.v34i4.12194
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194
identifier_str_mv 10.4025/actascitechnol.v34i4.12194
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194/pdf
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/12194/pdf_1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 34 No 4 (2012); 373-379
Acta Scientiarum. Technology; v. 34 n. 4 (2012); 373-379
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315334319046656