Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Moretti, José Fernando
Data de Publicação: 2016
Outros Autores: Minussi, Carlos Roberto, Akasaki, Jorge Luis, Fioriti, Cesar Fabiano, Melges, José Luis Pinheiro, Tashima, Mauro Mitsuuchi
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/27194
Resumo: Currently, artificial neural networks are being widely used in various fields of science and engineering. Neural networks have the ability to learn through experience and existing examples, and then generate solutions and answers to new problems, involving even the effects of non-linearity in their variables. The aim of this study is to use a feed-forward neural network with back-propagation technique, to predict the values of compressive strength and modulus of elasticity, at 28 days, of different concrete mixtures prepared and tested in the laboratory. It demonstrates the ability of the neural networks to quantify the strength and the elastic modulus of concrete specimens prepared using different mix proportions. 
id UEM-6_cd6b2fc6abd622a58601bcbf65ce1fdd
oai_identifier_str oai:periodicos.uem.br/ojs:article/27194
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networksmodulus of elasticitycompressive strengthconcreteneural networksartificial intelligenceEngenharia CivilCurrently, artificial neural networks are being widely used in various fields of science and engineering. Neural networks have the ability to learn through experience and existing examples, and then generate solutions and answers to new problems, involving even the effects of non-linearity in their variables. The aim of this study is to use a feed-forward neural network with back-propagation technique, to predict the values of compressive strength and modulus of elasticity, at 28 days, of different concrete mixtures prepared and tested in the laboratory. It demonstrates the ability of the neural networks to quantify the strength and the elastic modulus of concrete specimens prepared using different mix proportions. Universidade Estadual De Maringá2016-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionmodelagem numéricaapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2719410.4025/actascitechnol.v38i1.27194Acta Scientiarum. Technology; Vol 38 No 1 (2016); 65-70Acta Scientiarum. Technology; v. 38 n. 1 (2016); 65-701806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/27194/pdf_132Moretti, José FernandoMinussi, Carlos RobertoAkasaki, Jorge LuisFioriti, Cesar FabianoMelges, José Luis PinheiroTashima, Mauro Mitsuuchiinfo:eu-repo/semantics/openAccess2016-02-05T08:07:49Zoai:periodicos.uem.br/ojs:article/27194Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2016-02-05T08:07:49Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
title Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
spellingShingle Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
Moretti, José Fernando
modulus of elasticity
compressive strength
concrete
neural networks
artificial intelligence
Engenharia Civil
title_short Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
title_full Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
title_fullStr Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
title_full_unstemmed Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
title_sort Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks
author Moretti, José Fernando
author_facet Moretti, José Fernando
Minussi, Carlos Roberto
Akasaki, Jorge Luis
Fioriti, Cesar Fabiano
Melges, José Luis Pinheiro
Tashima, Mauro Mitsuuchi
author_role author
author2 Minussi, Carlos Roberto
Akasaki, Jorge Luis
Fioriti, Cesar Fabiano
Melges, José Luis Pinheiro
Tashima, Mauro Mitsuuchi
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Moretti, José Fernando
Minussi, Carlos Roberto
Akasaki, Jorge Luis
Fioriti, Cesar Fabiano
Melges, José Luis Pinheiro
Tashima, Mauro Mitsuuchi
dc.subject.por.fl_str_mv modulus of elasticity
compressive strength
concrete
neural networks
artificial intelligence
Engenharia Civil
topic modulus of elasticity
compressive strength
concrete
neural networks
artificial intelligence
Engenharia Civil
description Currently, artificial neural networks are being widely used in various fields of science and engineering. Neural networks have the ability to learn through experience and existing examples, and then generate solutions and answers to new problems, involving even the effects of non-linearity in their variables. The aim of this study is to use a feed-forward neural network with back-propagation technique, to predict the values of compressive strength and modulus of elasticity, at 28 days, of different concrete mixtures prepared and tested in the laboratory. It demonstrates the ability of the neural networks to quantify the strength and the elastic modulus of concrete specimens prepared using different mix proportions. 
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
modelagem numérica
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/27194
10.4025/actascitechnol.v38i1.27194
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/27194
identifier_str_mv 10.4025/actascitechnol.v38i1.27194
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/27194/pdf_132
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 38 No 1 (2016); 65-70
Acta Scientiarum. Technology; v. 38 n. 1 (2016); 65-70
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315335806976000