Dynamic model for a first order autoregression process with Bayesian methodology
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2553 |
Resumo: | A ramification of a first order autoregression process is provided. It comprises randomized and variant coefficients in time and assumes a structure of dependency of randomized coefficients that leads towards adapted Kalman's Filter. Although the Kalman Filter model is a generalization of the ordinary Kalman Filter, its analysis produces technical difficulties. It does not seem to be impossible to find a closed form for the filter. Monte Carlo's simulation was applied to Markov's Chain by Gibbs-Sampling and Metropolis-Hasting algorithms to infer parameters of model and work out forecasts of data for a time series of indexes of shares and meat prices. |
id |
UEM-6_e9782f9640799c5f21e45015852cc78c |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/2553 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
Dynamic model for a first order autoregression process with Bayesian methodologyModelo dinâmico para um processo auto-regressivo de primeira ordem, aplicando metodologia Bayesianaprocesso Auto-regressivoinferência Bayesianamodelo dinâmicofiltro de KalmanGibbs-SamplingMetropolis-Hastings1.02.02.00-5 EstatísticaA ramification of a first order autoregression process is provided. It comprises randomized and variant coefficients in time and assumes a structure of dependency of randomized coefficients that leads towards adapted Kalman's Filter. Although the Kalman Filter model is a generalization of the ordinary Kalman Filter, its analysis produces technical difficulties. It does not seem to be impossible to find a closed form for the filter. Monte Carlo's simulation was applied to Markov's Chain by Gibbs-Sampling and Metropolis-Hasting algorithms to infer parameters of model and work out forecasts of data for a time series of indexes of shares and meat prices.Neste artigo apresentamos uma ramificação do processo auto-regressivo de primeira ordem com coeficiente aleatório e variante no tempo, assumindo uma estrutura de dependência dos coeficientes aleatórios, que leva a um modelo de filtro de Kalman adaptado. Embora o modelo de filtro de Kalman considerado seja uma generalização do filtro de Kalman Ordinário, sua análise produz dificuldades técnicas, porque não é possível encontrar uma forma fechada para o filtro, assim aplicamos simulação de Monte Carlo em Cadeia de Markov utilizando os algoritmos Amostrador de Gibbs e Metropolis-Hasting para fazer inferência quanto aos parâmetros do modelo e também fazer previsões de dados de uma série temporal de índice de preços de ações e preço do boi gordo.Universidade Estadual De Maringá2008-04-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/255310.4025/actascitechnol.v24i0.2553Acta Scientiarum. Technology; Vol 24 (2002); 1755-1760Acta Scientiarum. Technology; v. 24 (2002); 1755-17601806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMporhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2553/1573Mena, LeonilceAndrade Filho, Marinho Gomes deinfo:eu-repo/semantics/openAccess2024-05-17T13:02:46Zoai:periodicos.uem.br/ojs:article/2553Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2024-05-17T13:02:46Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
Dynamic model for a first order autoregression process with Bayesian methodology Modelo dinâmico para um processo auto-regressivo de primeira ordem, aplicando metodologia Bayesiana |
title |
Dynamic model for a first order autoregression process with Bayesian methodology |
spellingShingle |
Dynamic model for a first order autoregression process with Bayesian methodology Mena, Leonilce processo Auto-regressivo inferência Bayesiana modelo dinâmico filtro de Kalman Gibbs-Sampling Metropolis-Hastings 1.02.02.00-5 Estatística |
title_short |
Dynamic model for a first order autoregression process with Bayesian methodology |
title_full |
Dynamic model for a first order autoregression process with Bayesian methodology |
title_fullStr |
Dynamic model for a first order autoregression process with Bayesian methodology |
title_full_unstemmed |
Dynamic model for a first order autoregression process with Bayesian methodology |
title_sort |
Dynamic model for a first order autoregression process with Bayesian methodology |
author |
Mena, Leonilce |
author_facet |
Mena, Leonilce Andrade Filho, Marinho Gomes de |
author_role |
author |
author2 |
Andrade Filho, Marinho Gomes de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Mena, Leonilce Andrade Filho, Marinho Gomes de |
dc.subject.por.fl_str_mv |
processo Auto-regressivo inferência Bayesiana modelo dinâmico filtro de Kalman Gibbs-Sampling Metropolis-Hastings 1.02.02.00-5 Estatística |
topic |
processo Auto-regressivo inferência Bayesiana modelo dinâmico filtro de Kalman Gibbs-Sampling Metropolis-Hastings 1.02.02.00-5 Estatística |
description |
A ramification of a first order autoregression process is provided. It comprises randomized and variant coefficients in time and assumes a structure of dependency of randomized coefficients that leads towards adapted Kalman's Filter. Although the Kalman Filter model is a generalization of the ordinary Kalman Filter, its analysis produces technical difficulties. It does not seem to be impossible to find a closed form for the filter. Monte Carlo's simulation was applied to Markov's Chain by Gibbs-Sampling and Metropolis-Hasting algorithms to infer parameters of model and work out forecasts of data for a time series of indexes of shares and meat prices. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-04-22 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2553 10.4025/actascitechnol.v24i0.2553 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2553 |
identifier_str_mv |
10.4025/actascitechnol.v24i0.2553 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/2553/1573 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 24 (2002); 1755-1760 Acta Scientiarum. Technology; v. 24 (2002); 1755-1760 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315332140105728 |