Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa

Detalhes bibliográficos
Autor(a) principal: Vieira Neto, José Carlos
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UEPB
Texto Completo: http://tede.bc.uepb.edu.br/jspui/handle/tede/4491
Resumo: This study computationally addresses the modeling of the chemical reaction between the amide ion (NH2-) and the methyl formate molecule (HCOOCH3) in the gas phase. Experimental results suggest that the interaction between the amide ion and the neutral methyl formate molecule can occur by four mechanisms in the gas phase, which are: (1) methyl proton abstraction mechanism (AP-2) being or more favored and raising to formation of two products HCO2CH2-, and NH3; (2) Riveros mechanism (AP-1) or second most favored channel and causes α-elimination of the CO molecule, formation of NH3 and CH3O- ion; (3) (BAC2) also called because it represents an attack on the acyl carbon, or a third favoring mechanism by which the products HCONH- and CH3OH or HCONH2 and CH3O- can be formed; (4) second-order nucleophilic substitution (SN2), from the attack of the amidete to the methyl carbon of methyl formate, leading to the formation of two products CH3NH2 and HCO2-. In order to characterize the structures of minimums and obtain their respective energies, the theory level MP2/6-311++G(d,p) was undertaken, subsequently aiming at a refinement of the energies used at the CCSD(T) level as the basis functions aug-cc-pVnZ, with n=(D and Z) used for extrapolating the energies for a complete basis set (CBS) with the quais forams constructed the potential energy profiles. As the main modeling results for the NH2- + HCOOCH3 reaction, the RRKM (Rice-Ramsperger-Kassel-Marcus) calculations suggest that the distribution of two products two mechanisms SN2:BAC2:AP corresponds to 7%:49%:44%, indicating that the CH3O- ion can also be formed by the BAC2 mechanism. The addition of a water molecule to the reaction, NH2–(H2O) + HCOOCH3, revealed that a single water molecule raised the activation barrier energies of two transition states, especially for the SN2 mechanism, making it higher than two energy reagents making it impossible to observe two products of such a mechanism. The AP-1, AP-2 and BAC2 mechanisms maintain two reagent energy below, therefore, the total fragmentation of two products for the proton abstraction mechanisms will become endothermic, as well as the kinetic calculations will reveal that the mechanism of Riveros is favored over the others with about 76% in terms of the BAC2 mechanism, second most favored, presenting a performance of 24% in the AP-2 and SN2 mechanisms, 0,2% and 0%, respectively. The disfavor of the BAC2 mechanism in relation to the Riveros mechanism is attributed to the movement of water proton abstraction carried out by amide before the attack on the acyl carbon, while the Riveros mechanism occurs freely and therefore shows higher yield.
id UEPB_79695f612f2c341687d2970e0159cf21
oai_identifier_str oai:tede.bc.uepb.edu.br:tede/4491
network_acronym_str UEPB
network_name_str Biblioteca Digital de Teses e Dissertações da UEPB
repository_id_str
spelling Leitão, Ezequiel Fragoso Vieirahttp://lattes.cnpq.br/7678437706994830Lucena Junior, Juracy Regis dehttp://lattes.cnpq.br/8119528339396944Souza, Miguel Angelo Fonseca dehttp://lattes.cnpq.br/3530941218204965http://lattes.cnpq.br/2454043501762184Vieira Neto, José Carlos2023-03-31T23:06:10Z2999-12-312022-09-29VIEIRA NETO, José Carlos. Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa. 2022. 94f. Dissertação (Programa de Pós-Graduação em Química - PPGQ) - Universidade Estadual da Paraíba, Campina Grande-PB, 2023.http://tede.bc.uepb.edu.br/jspui/handle/tede/4491This study computationally addresses the modeling of the chemical reaction between the amide ion (NH2-) and the methyl formate molecule (HCOOCH3) in the gas phase. Experimental results suggest that the interaction between the amide ion and the neutral methyl formate molecule can occur by four mechanisms in the gas phase, which are: (1) methyl proton abstraction mechanism (AP-2) being or more favored and raising to formation of two products HCO2CH2-, and NH3; (2) Riveros mechanism (AP-1) or second most favored channel and causes α-elimination of the CO molecule, formation of NH3 and CH3O- ion; (3) (BAC2) also called because it represents an attack on the acyl carbon, or a third favoring mechanism by which the products HCONH- and CH3OH or HCONH2 and CH3O- can be formed; (4) second-order nucleophilic substitution (SN2), from the attack of the amidete to the methyl carbon of methyl formate, leading to the formation of two products CH3NH2 and HCO2-. In order to characterize the structures of minimums and obtain their respective energies, the theory level MP2/6-311++G(d,p) was undertaken, subsequently aiming at a refinement of the energies used at the CCSD(T) level as the basis functions aug-cc-pVnZ, with n=(D and Z) used for extrapolating the energies for a complete basis set (CBS) with the quais forams constructed the potential energy profiles. As the main modeling results for the NH2- + HCOOCH3 reaction, the RRKM (Rice-Ramsperger-Kassel-Marcus) calculations suggest that the distribution of two products two mechanisms SN2:BAC2:AP corresponds to 7%:49%:44%, indicating that the CH3O- ion can also be formed by the BAC2 mechanism. The addition of a water molecule to the reaction, NH2–(H2O) + HCOOCH3, revealed that a single water molecule raised the activation barrier energies of two transition states, especially for the SN2 mechanism, making it higher than two energy reagents making it impossible to observe two products of such a mechanism. The AP-1, AP-2 and BAC2 mechanisms maintain two reagent energy below, therefore, the total fragmentation of two products for the proton abstraction mechanisms will become endothermic, as well as the kinetic calculations will reveal that the mechanism of Riveros is favored over the others with about 76% in terms of the BAC2 mechanism, second most favored, presenting a performance of 24% in the AP-2 and SN2 mechanisms, 0,2% and 0%, respectively. The disfavor of the BAC2 mechanism in relation to the Riveros mechanism is attributed to the movement of water proton abstraction carried out by amide before the attack on the acyl carbon, while the Riveros mechanism occurs freely and therefore shows higher yield.Este estudo aborda computacionalmente a modelagem da reação química entre o íon amideto (NH2-) e a molécula de formiato de metila (HCOOCH3) em fase gasosa. Resultados experimentais sugerem que a interação entre o íon amideto e a molécula neutra de formiato de metila pode ocorrer por quatro mecanismo em fase gasosa, quais sejam: (1) mecanismo de abstração de próton da metila (AP-2) sendo o mais favorecido e levando a formação dos produtos HCO2CH2-, e NH3; (2) mecanismo de Riveros (AP-1) o segundo canal mais favorecido e leva à α-eliminação da molécula de CO, formação de NH3 e íon CH3O-; (3) (BAC2) chamado assim por representar um ataque ao carbono acil, o terceiro mecanismo em ordem de favorecimento por onde pode serem formados os produtos HCONH- e CH3OH ou HCONH2 e CH3O-; (4) substituição nucleofílica de segunda ordem (SN2), a partir do ataque do amideto ao carbono metílico do formiato de metila levando a formação dos produtos CH3NH2 e HCO2-. Com o objetivo de caracterizar as estruturas de mínimos e obter suas respectivas energias foi empregado o nível de teoria MP2/6-311++G(d,p), posteriormente visando um refinamento das energias usou-se o nível CCSD(T) com as funções de base aug-cc-pVnZ, com n=(D e Z) usados para extrapolação das energias para um conjunto de bases completo (CBS) com as quais foram construídos os perfis de energia potencial. Como principais resultados da modelagem para a reação NH2- + HCOOCH3, os cálculos RRKM (Rice-Ramsperger-Kassel-Marcus) sugerem que a distribuição dos produtos dos mecanismos SN2:BAC2:AP corresponde a 7%:49%:44%, indicando que o íon CH3O- também pode ser formado pelo mecanismo BAC2. A adição de uma molécula de água na reação, NH2–(H2O) + HCOOCH3, revelou que uma única molécula de água elevou as energias das barreiras de ativação dos estados de transição, especialmente para o mecanismo SN2, tornando-a superior a energia dos reagentes inviabilizando a observação dos produtos de tal mecanismo. Os mecanismos AP-1, AP-2 e BAC2 mantiveram-se abaixo da energia dos reagentes, porém, à fragmentação total dos produtos para os mecanismos de abstração de próton tornaram-se endotérmicas, mesmo assim, os cálculos cinéticos revelaram que o mecanismo de Riveros é favorecido sobre os demais com cerca 76% enquanto o mecanismo BAC2 segundo mais favorecido apresentou rendimento de 24% e os mecanismo AP-2 e SN2, 0,2% e 0%, respectivamente. O desfavorecimento do mecanismo BAC2 em relação ao mecanismo de Riveros é atribuído ao movimento de abstração de próton da água realizado pelo amideto antes do ataque ao carbono acil, enquanto o mecanismo de Riveros ocorre livremente e por isso apresentou maior rendimento.Submitted by José Carlos Vieira Neto (jkvneto@gmail.com) on 2022-11-04T22:59:11Z No. of bitstreams: 2 DS-José Carlos Vieira Neto.pdf: 5079976 bytes, checksum: 70500832f3ed6f478beb1ea70372cc32 (MD5) Termo de deposito BDTD.pdf: 2007885 bytes, checksum: 5e63f0b78ec5b5d23d291cedc96b5342 (MD5)Approved for entry into archive by Jean Medeiros (jeanletras@uepb.edu.br) on 2022-11-07T11:14:44Z (GMT) No. of bitstreams: 2 DS-José Carlos Vieira Neto.pdf: 5079976 bytes, checksum: 70500832f3ed6f478beb1ea70372cc32 (MD5) Termo de deposito BDTD.pdf: 2007885 bytes, checksum: 5e63f0b78ec5b5d23d291cedc96b5342 (MD5)Made available in DSpace on 2023-03-31T23:06:10Z (GMT). No. of bitstreams: 2 DS-José Carlos Vieira Neto.pdf: 5079976 bytes, checksum: 70500832f3ed6f478beb1ea70372cc32 (MD5) Termo de deposito BDTD.pdf: 2007885 bytes, checksum: 5e63f0b78ec5b5d23d291cedc96b5342 (MD5) Previous issue date: 2022-09-29Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Estadual da ParaíbaPrograma de Pós-Graduação em Química - PPGQUEPBBrasilPró-Reitoria de Pós-Graduação e Pesquisa - PRPGPFormiato de metilaFase gasosaÍon amidetoReação químicaMethyl formateGas phaseAmide ionFISICO-QUIMICA::QUIMICA TEORICAModelagem computacional da reação do íon amideto com formiato de metila em fase gasosaComputational modeling of the reaction of amidete ion with methyl formiate in gas phaseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-79317878423444719666006006005248714503811102781693583216945602752info:eu-repo/semantics/embargoedAccessreponame:Biblioteca Digital de Teses e Dissertações da UEPBinstname:Universidade Estadual da Paraíba (UEPB)instacron:UEPBORIGINALDS-José Carlos Vieira Neto.pdfDS-José Carlos Vieira Neto.pdfapplication/pdf5079976http://tede.bc.uepb.edu.br/jspui/bitstream/tede/4491/2/DS-Jos%C3%A9+Carlos+Vieira+Neto.pdf70500832f3ed6f478beb1ea70372cc32MD52Termo de deposito BDTD.pdfTermo de deposito BDTD.pdfapplication/pdf2007885http://tede.bc.uepb.edu.br/jspui/bitstream/tede/4491/3/Termo+de+deposito+BDTD.pdf5e63f0b78ec5b5d23d291cedc96b5342MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81960http://tede.bc.uepb.edu.br/jspui/bitstream/tede/4491/1/license.txt6052ae61e77222b2086e666b7ae213ceMD51tede/44912023-03-31 20:06:10.564oai:tede.bc.uepb.edu.br:tede/4491TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIApFc3RhZHVhbCBkYSBQYXJhw61iYSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVFUEIgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVFUEIgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIApuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSAKY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIApkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUVQQiAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRVBCLCAKVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyAKREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRVBCIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede.bc.uepb.edu.br/jspui/PUBhttp://tede.bc.uepb.edu.br/oai/requestbc@uepb.edu.br||opendoar:2023-03-31T23:06:10Biblioteca Digital de Teses e Dissertações da UEPB - Universidade Estadual da Paraíba (UEPB)false
dc.title.por.fl_str_mv Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa
dc.title.alternative.eng.fl_str_mv Computational modeling of the reaction of amidete ion with methyl formiate in gas phase
title Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa
spellingShingle Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa
Vieira Neto, José Carlos
Formiato de metila
Fase gasosa
Íon amideto
Reação química
Methyl formate
Gas phase
Amide ion
FISICO-QUIMICA::QUIMICA TEORICA
title_short Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa
title_full Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa
title_fullStr Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa
title_full_unstemmed Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa
title_sort Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa
author Vieira Neto, José Carlos
author_facet Vieira Neto, José Carlos
author_role author
dc.contributor.advisor1.fl_str_mv Leitão, Ezequiel Fragoso Vieira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7678437706994830
dc.contributor.referee1.fl_str_mv Lucena Junior, Juracy Regis de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8119528339396944
dc.contributor.referee2.fl_str_mv Souza, Miguel Angelo Fonseca de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3530941218204965
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2454043501762184
dc.contributor.author.fl_str_mv Vieira Neto, José Carlos
contributor_str_mv Leitão, Ezequiel Fragoso Vieira
Lucena Junior, Juracy Regis de
Souza, Miguel Angelo Fonseca de
dc.subject.por.fl_str_mv Formiato de metila
Fase gasosa
Íon amideto
Reação química
topic Formiato de metila
Fase gasosa
Íon amideto
Reação química
Methyl formate
Gas phase
Amide ion
FISICO-QUIMICA::QUIMICA TEORICA
dc.subject.eng.fl_str_mv Methyl formate
Gas phase
Amide ion
dc.subject.cnpq.fl_str_mv FISICO-QUIMICA::QUIMICA TEORICA
description This study computationally addresses the modeling of the chemical reaction between the amide ion (NH2-) and the methyl formate molecule (HCOOCH3) in the gas phase. Experimental results suggest that the interaction between the amide ion and the neutral methyl formate molecule can occur by four mechanisms in the gas phase, which are: (1) methyl proton abstraction mechanism (AP-2) being or more favored and raising to formation of two products HCO2CH2-, and NH3; (2) Riveros mechanism (AP-1) or second most favored channel and causes α-elimination of the CO molecule, formation of NH3 and CH3O- ion; (3) (BAC2) also called because it represents an attack on the acyl carbon, or a third favoring mechanism by which the products HCONH- and CH3OH or HCONH2 and CH3O- can be formed; (4) second-order nucleophilic substitution (SN2), from the attack of the amidete to the methyl carbon of methyl formate, leading to the formation of two products CH3NH2 and HCO2-. In order to characterize the structures of minimums and obtain their respective energies, the theory level MP2/6-311++G(d,p) was undertaken, subsequently aiming at a refinement of the energies used at the CCSD(T) level as the basis functions aug-cc-pVnZ, with n=(D and Z) used for extrapolating the energies for a complete basis set (CBS) with the quais forams constructed the potential energy profiles. As the main modeling results for the NH2- + HCOOCH3 reaction, the RRKM (Rice-Ramsperger-Kassel-Marcus) calculations suggest that the distribution of two products two mechanisms SN2:BAC2:AP corresponds to 7%:49%:44%, indicating that the CH3O- ion can also be formed by the BAC2 mechanism. The addition of a water molecule to the reaction, NH2–(H2O) + HCOOCH3, revealed that a single water molecule raised the activation barrier energies of two transition states, especially for the SN2 mechanism, making it higher than two energy reagents making it impossible to observe two products of such a mechanism. The AP-1, AP-2 and BAC2 mechanisms maintain two reagent energy below, therefore, the total fragmentation of two products for the proton abstraction mechanisms will become endothermic, as well as the kinetic calculations will reveal that the mechanism of Riveros is favored over the others with about 76% in terms of the BAC2 mechanism, second most favored, presenting a performance of 24% in the AP-2 and SN2 mechanisms, 0,2% and 0%, respectively. The disfavor of the BAC2 mechanism in relation to the Riveros mechanism is attributed to the movement of water proton abstraction carried out by amide before the attack on the acyl carbon, while the Riveros mechanism occurs freely and therefore shows higher yield.
publishDate 2022
dc.date.issued.fl_str_mv 2022-09-29
dc.date.accessioned.fl_str_mv 2023-03-31T23:06:10Z
dc.date.available.fl_str_mv 2999-12-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VIEIRA NETO, José Carlos. Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa. 2022. 94f. Dissertação (Programa de Pós-Graduação em Química - PPGQ) - Universidade Estadual da Paraíba, Campina Grande-PB, 2023.
dc.identifier.uri.fl_str_mv http://tede.bc.uepb.edu.br/jspui/handle/tede/4491
identifier_str_mv VIEIRA NETO, José Carlos. Modelagem computacional da reação do íon amideto com formiato de metila em fase gasosa. 2022. 94f. Dissertação (Programa de Pós-Graduação em Química - PPGQ) - Universidade Estadual da Paraíba, Campina Grande-PB, 2023.
url http://tede.bc.uepb.edu.br/jspui/handle/tede/4491
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -7931787842344471966
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 524871450381110278
dc.relation.cnpq.fl_str_mv 1693583216945602752
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual da Paraíba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química - PPGQ
dc.publisher.initials.fl_str_mv UEPB
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Pró-Reitoria de Pós-Graduação e Pesquisa - PRPGP
publisher.none.fl_str_mv Universidade Estadual da Paraíba
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UEPB
instname:Universidade Estadual da Paraíba (UEPB)
instacron:UEPB
instname_str Universidade Estadual da Paraíba (UEPB)
instacron_str UEPB
institution UEPB
reponame_str Biblioteca Digital de Teses e Dissertações da UEPB
collection Biblioteca Digital de Teses e Dissertações da UEPB
bitstream.url.fl_str_mv http://tede.bc.uepb.edu.br/jspui/bitstream/tede/4491/2/DS-Jos%C3%A9+Carlos+Vieira+Neto.pdf
http://tede.bc.uepb.edu.br/jspui/bitstream/tede/4491/3/Termo+de+deposito+BDTD.pdf
http://tede.bc.uepb.edu.br/jspui/bitstream/tede/4491/1/license.txt
bitstream.checksum.fl_str_mv 70500832f3ed6f478beb1ea70372cc32
5e63f0b78ec5b5d23d291cedc96b5342
6052ae61e77222b2086e666b7ae213ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UEPB - Universidade Estadual da Paraíba (UEPB)
repository.mail.fl_str_mv bc@uepb.edu.br||
_version_ 1800227428527767552