Efficient indoor localization using graphs

Detalhes bibliográficos
Autor(a) principal: Lima, Max Willian Soares
Data de Publicação: 2019
Outros Autores: http://lattes.cnpq.br/0426224695950806
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFAM
Texto Completo: https://tede.ufam.edu.br/handle/tede/7308
Resumo: The main goal of an Indoor Positioning System (IPS) is to estimate the position of mobile devices in indoor environments. For this, the primary source of information is the signal strength of packets received by a set of routers. The fingerprint technique is one of the most used techniques for IPSs. By using supervised machine learning techniques, it trains a model with the received signal intensity information so it can be used to estimate the positions of the devices later in an online phase. Although the k-Nearest Neighbors (kNN) is one of the most widely used classification methods due to its accuracy, it has no scalability since a sample we need to classify must be compared to all other samples in the training database. In this work, we use a novel hierarchical navigable small world graph technique to build a search structure so the location of a sample can be efficiently found, allowing the IPSs to be used in large scale scenarios or run on devices with limited resources. To carry out our performance evaluation, we proposed a synthetic IPS dataset generator as well as implemented a complete real-world, high scale IPS testbed. We compared the performance of our graph-based solution with other known kNN variants, such as Kd-Tree and Ball-Tree. Our results clearly show the performance gains of the proposed solution at 96% when compared to the classic kNN and at least 77% when compared to the tree-based approaches.
id UFAM_7604a86110738742673307b6d8068497
oai_identifier_str oai:https://tede.ufam.edu.br/handle/:tede/7308
network_acronym_str UFAM
network_name_str Biblioteca Digital de Teses e Dissertações da UFAM
repository_id_str 6592
spelling Efficient indoor localization using graphsSistemas de posicionamento indoor (localização sem fio)CIÊNCIAS EXATAS E DA TERRA: CIÊNCIA DA COMPUTAÇÃOSmall world graphsIndoor positioning systemsNearest neighborscThe main goal of an Indoor Positioning System (IPS) is to estimate the position of mobile devices in indoor environments. For this, the primary source of information is the signal strength of packets received by a set of routers. The fingerprint technique is one of the most used techniques for IPSs. By using supervised machine learning techniques, it trains a model with the received signal intensity information so it can be used to estimate the positions of the devices later in an online phase. Although the k-Nearest Neighbors (kNN) is one of the most widely used classification methods due to its accuracy, it has no scalability since a sample we need to classify must be compared to all other samples in the training database. In this work, we use a novel hierarchical navigable small world graph technique to build a search structure so the location of a sample can be efficiently found, allowing the IPSs to be used in large scale scenarios or run on devices with limited resources. To carry out our performance evaluation, we proposed a synthetic IPS dataset generator as well as implemented a complete real-world, high scale IPS testbed. We compared the performance of our graph-based solution with other known kNN variants, such as Kd-Tree and Ball-Tree. Our results clearly show the performance gains of the proposed solution at 96% when compared to the classic kNN and at least 77% when compared to the tree-based approaches.The main goal of an Indoor Positioning System (IPS) is to estimate the position of mobile devices in indoor environments. For this, the primary source of information is the signal strength of packets received by a set of routers. The fingerprint technique is one of the most used techniques for IPSs. By using supervised machine learning techniques, it trains a model with the received signal intensity information so it can be used to estimate the positions of the devices later in an online phase. Although the k-Nearest Neighbors (kNN) is one of the most widely used classification methods due to its accuracy, it has no scalability since a sample we need to classify must be compared to all other samples in the training database. In this work, we use a novel hierarchical navigable small world graph technique to build a search structure so the location of a sample can be efficiently found, allowing the IPSs to be used in large scale scenarios or run on devices with limited resources. To carry out our performance evaluation, we proposed a synthetic IPS dataset generator as well as implemented a complete real-world, high scale IPS testbed. We compared the performance of our graph-based solution with other known kNN variants, such as Kd-Tree and Ball-Tree. Our results clearly show the performance gains of the proposed solution at 96% when compared to the classic kNN and at least 77% when compared to the tree-based approaches.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal do AmazonasInstituto de ComputaçãoBrasilUFAMPrograma de Pós-graduação em InformáticaMoura, Edleno Silva dehttp://lattes.cnpq.br/4737852130924504Balico, Leandro Nelinhohttp://lattes.cnpq.br/7704628402527376Lima, Max Willian Soareshttp://lattes.cnpq.br/04262246959508062019-08-15T12:46:08Z2019-08-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLIMA, Max Willian Soares. Efficient indoor localization using graphs. 2019. 35 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2019.https://tede.ufam.edu.br/handle/tede/7308enghttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFAMinstname:Universidade Federal do Amazonas (UFAM)instacron:UFAM2019-08-16T05:03:40Zoai:https://tede.ufam.edu.br/handle/:tede/7308Biblioteca Digital de Teses e Dissertaçõeshttp://200.129.163.131:8080/PUBhttp://200.129.163.131:8080/oai/requestddbc@ufam.edu.br||ddbc@ufam.edu.bropendoar:65922019-08-16T05:03:40Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)false
dc.title.none.fl_str_mv Efficient indoor localization using graphs
title Efficient indoor localization using graphs
spellingShingle Efficient indoor localization using graphs
Lima, Max Willian Soares
Sistemas de posicionamento indoor (localização sem fio)
CIÊNCIAS EXATAS E DA TERRA: CIÊNCIA DA COMPUTAÇÃO
Small world graphs
Indoor positioning systems
Nearest neighborsc
title_short Efficient indoor localization using graphs
title_full Efficient indoor localization using graphs
title_fullStr Efficient indoor localization using graphs
title_full_unstemmed Efficient indoor localization using graphs
title_sort Efficient indoor localization using graphs
author Lima, Max Willian Soares
author_facet Lima, Max Willian Soares
http://lattes.cnpq.br/0426224695950806
author_role author
author2 http://lattes.cnpq.br/0426224695950806
author2_role author
dc.contributor.none.fl_str_mv Moura, Edleno Silva de
http://lattes.cnpq.br/4737852130924504
Balico, Leandro Nelinho
http://lattes.cnpq.br/7704628402527376
dc.contributor.author.fl_str_mv Lima, Max Willian Soares
http://lattes.cnpq.br/0426224695950806
dc.subject.por.fl_str_mv Sistemas de posicionamento indoor (localização sem fio)
CIÊNCIAS EXATAS E DA TERRA: CIÊNCIA DA COMPUTAÇÃO
Small world graphs
Indoor positioning systems
Nearest neighborsc
topic Sistemas de posicionamento indoor (localização sem fio)
CIÊNCIAS EXATAS E DA TERRA: CIÊNCIA DA COMPUTAÇÃO
Small world graphs
Indoor positioning systems
Nearest neighborsc
description The main goal of an Indoor Positioning System (IPS) is to estimate the position of mobile devices in indoor environments. For this, the primary source of information is the signal strength of packets received by a set of routers. The fingerprint technique is one of the most used techniques for IPSs. By using supervised machine learning techniques, it trains a model with the received signal intensity information so it can be used to estimate the positions of the devices later in an online phase. Although the k-Nearest Neighbors (kNN) is one of the most widely used classification methods due to its accuracy, it has no scalability since a sample we need to classify must be compared to all other samples in the training database. In this work, we use a novel hierarchical navigable small world graph technique to build a search structure so the location of a sample can be efficiently found, allowing the IPSs to be used in large scale scenarios or run on devices with limited resources. To carry out our performance evaluation, we proposed a synthetic IPS dataset generator as well as implemented a complete real-world, high scale IPS testbed. We compared the performance of our graph-based solution with other known kNN variants, such as Kd-Tree and Ball-Tree. Our results clearly show the performance gains of the proposed solution at 96% when compared to the classic kNN and at least 77% when compared to the tree-based approaches.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-15T12:46:08Z
2019-08-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LIMA, Max Willian Soares. Efficient indoor localization using graphs. 2019. 35 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2019.
https://tede.ufam.edu.br/handle/tede/7308
identifier_str_mv LIMA, Max Willian Soares. Efficient indoor localization using graphs. 2019. 35 f. Dissertação (Mestrado em Informática) - Universidade Federal do Amazonas, Manaus, 2019.
url https://tede.ufam.edu.br/handle/tede/7308
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
publisher.none.fl_str_mv Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFAM
instname:Universidade Federal do Amazonas (UFAM)
instacron:UFAM
instname_str Universidade Federal do Amazonas (UFAM)
instacron_str UFAM
institution UFAM
reponame_str Biblioteca Digital de Teses e Dissertações da UFAM
collection Biblioteca Digital de Teses e Dissertações da UFAM
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFAM - Universidade Federal do Amazonas (UFAM)
repository.mail.fl_str_mv ddbc@ufam.edu.br||ddbc@ufam.edu.br
_version_ 1809732035487465472