Uma abordagem deep learning para reconhecimento de expressões faciais.

Detalhes bibliográficos
Autor(a) principal: Canário, João Paulo Pereira de Sá
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://repositorio.ufba.br/ri/handle/ri/19384
Resumo: Expressões faciais são o resultado de mudanças na musculatura facial em resposta aos estados emocionais e tem um papel fundamental na interação das pessoas. A partir dos estudos iniciados por Darwin, Paul Ekman desenvolveu um estudo sugerindo a existência de sete expressões faciais básicas: alegria, tristeza, medo, nojo, desdém, surpresa e raiva, além da expressão neutra. Posteriormente, no intuito de mensurar o comportamento facial de forma mais aprofundada, Ekman desenvolveu um sistema para medição de todos os movimentos musculares faciais e suas intensidades, o Facial Action Coding System (FACS). O FACS permitiu um avanço em pesquisas de novos métodos para reconhecimento de expressões faciais aplicados nas mais diversas áreas, como educação, psicologia, interação homem-máquina, monitoração de comportamento, dentre outros. O presente trabalho sugere uma nova abordagem para reconhecimento de expressões faciais combinando mapas de saliência para destacar as partes da face que mais concentram as expressões faciais (conspicuidade) e uma rede neural de convolução. A análises mostraram que o sistema proposto alcançou uma precisão média na identificação das 7 (sete) expressões faciais básicas de 90% (noventa por cento) sobre o Extended Cohn-Kanade Data Set. Quando comparado com os trabalhos do estado-da-arte relacionados, o sistema mostrou uma precisão média superior a todos, além de superar, em termos absolutos, todos os trabalhos em 3 (três) das 7 (sete) expressões, demonstrando um resultado promissor.
id UFBA-2_809b798cf4f205699c1ea8397bcba5a1
oai_identifier_str oai:repositorio.ufba.br:ri/19384
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Canário, João Paulo Pereira de SáOliveira, Luciano Rebouças deRios, Tatiane NogueiraFerreira, Adonias Magdiel Silva2016-06-03T23:39:15Z2016-06-03T23:39:15Z2016-06-032016-01-06http://repositorio.ufba.br/ri/handle/ri/19384Expressões faciais são o resultado de mudanças na musculatura facial em resposta aos estados emocionais e tem um papel fundamental na interação das pessoas. A partir dos estudos iniciados por Darwin, Paul Ekman desenvolveu um estudo sugerindo a existência de sete expressões faciais básicas: alegria, tristeza, medo, nojo, desdém, surpresa e raiva, além da expressão neutra. Posteriormente, no intuito de mensurar o comportamento facial de forma mais aprofundada, Ekman desenvolveu um sistema para medição de todos os movimentos musculares faciais e suas intensidades, o Facial Action Coding System (FACS). O FACS permitiu um avanço em pesquisas de novos métodos para reconhecimento de expressões faciais aplicados nas mais diversas áreas, como educação, psicologia, interação homem-máquina, monitoração de comportamento, dentre outros. O presente trabalho sugere uma nova abordagem para reconhecimento de expressões faciais combinando mapas de saliência para destacar as partes da face que mais concentram as expressões faciais (conspicuidade) e uma rede neural de convolução. A análises mostraram que o sistema proposto alcançou uma precisão média na identificação das 7 (sete) expressões faciais básicas de 90% (noventa por cento) sobre o Extended Cohn-Kanade Data Set. Quando comparado com os trabalhos do estado-da-arte relacionados, o sistema mostrou uma precisão média superior a todos, além de superar, em termos absolutos, todos os trabalhos em 3 (três) das 7 (sete) expressões, demonstrando um resultado promissor.Submitted by Marcos Samuel (msamjunior@gmail.com) on 2016-05-31T17:50:46Z No. of bitstreams: 1 dissertação versão final.pdf: 26038840 bytes, checksum: 8d49c3d821b0498b562d9afe5a2bc1f8 (MD5)Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-03T23:39:15Z (GMT) No. of bitstreams: 1 dissertação versão final.pdf: 26038840 bytes, checksum: 8d49c3d821b0498b562d9afe5a2bc1f8 (MD5)Made available in DSpace on 2016-06-03T23:39:15Z (GMT). No. of bitstreams: 1 dissertação versão final.pdf: 26038840 bytes, checksum: 8d49c3d821b0498b562d9afe5a2bc1f8 (MD5)Ciência da ComputaçãoRede Neural de ConvoluçãoExpressões FaciaisMapas de SaliênciaUma abordagem deep learning para reconhecimento de expressões faciais.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisInstituto de Matemática. Departamento de Ciência da ComputaçãoMestrado Multiinstitucional em Ciência da ComputaçãoUFBAbrasilinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALdissertação versão final.pdfdissertação versão final.pdfapplication/pdf26038840https://repositorio.ufba.br/bitstream/ri/19384/1/disserta%c3%a7%c3%a3o%20vers%c3%a3o%20final.pdf8d49c3d821b0498b562d9afe5a2bc1f8MD51LICENSElicense.txtlicense.txttext/plain1345https://repositorio.ufba.br/bitstream/ri/19384/2/license.txt0d4b811ef71182510d2015daa7c8a900MD52TEXTdissertação versão final.pdf.txtdissertação versão final.pdf.txtExtracted texttext/plain166113https://repositorio.ufba.br/bitstream/ri/19384/3/disserta%c3%a7%c3%a3o%20vers%c3%a3o%20final.pdf.txt8b96526e2572376c3ba0549364330155MD53ri/193842022-07-01 10:46:42.523oai:repositorio.ufba.br:ri/19384VGVybW8gZGUgTGljZW4/YSwgbj9vIGV4Y2x1c2l2bywgcGFyYSBvIGRlcD9zaXRvIG5vIFJlcG9zaXQ/cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZCQS4KCiBQZWxvIHByb2Nlc3NvIGRlIHN1Ym1pc3M/byBkZSBkb2N1bWVudG9zLCBvIGF1dG9yIG91IHNldSByZXByZXNlbnRhbnRlIGxlZ2FsLCBhbyBhY2VpdGFyIAplc3NlIHRlcm1vIGRlIGxpY2VuP2EsIGNvbmNlZGUgYW8gUmVwb3NpdD9yaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkYSBCYWhpYSAKbyBkaXJlaXRvIGRlIG1hbnRlciB1bWEgYz9waWEgZW0gc2V1IHJlcG9zaXQ/cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCBkZSBwcmVzZXJ2YT8/by4gCkVzc2VzIHRlcm1vcywgbj9vIGV4Y2x1c2l2b3MsIG1hbnQ/bSBvcyBkaXJlaXRvcyBkZSBhdXRvci9jb3B5cmlnaHQsIG1hcyBlbnRlbmRlIG8gZG9jdW1lbnRvIApjb21vIHBhcnRlIGRvIGFjZXJ2byBpbnRlbGVjdHVhbCBkZXNzYSBVbml2ZXJzaWRhZGUuCgogUGFyYSBvcyBkb2N1bWVudG9zIHB1YmxpY2Fkb3MgY29tIHJlcGFzc2UgZGUgZGlyZWl0b3MgZGUgZGlzdHJpYnVpPz9vLCBlc3NlIHRlcm1vIGRlIGxpY2VuP2EgCmVudGVuZGUgcXVlOgoKIE1hbnRlbmRvIG9zIGRpcmVpdG9zIGF1dG9yYWlzLCByZXBhc3NhZG9zIGEgdGVyY2Vpcm9zLCBlbSBjYXNvIGRlIHB1YmxpY2E/P2VzLCBvIHJlcG9zaXQ/cmlvCnBvZGUgcmVzdHJpbmdpciBvIGFjZXNzbyBhbyB0ZXh0byBpbnRlZ3JhbCwgbWFzIGxpYmVyYSBhcyBpbmZvcm1hPz9lcyBzb2JyZSBvIGRvY3VtZW50bwooTWV0YWRhZG9zIGVzY3JpdGl2b3MpLgoKIERlc3RhIGZvcm1hLCBhdGVuZGVuZG8gYW9zIGFuc2Vpb3MgZGVzc2EgdW5pdmVyc2lkYWRlIGVtIG1hbnRlciBzdWEgcHJvZHU/P28gY2llbnQ/ZmljYSBjb20gCmFzIHJlc3RyaT8/ZXMgaW1wb3N0YXMgcGVsb3MgZWRpdG9yZXMgZGUgcGVyaT9kaWNvcy4KCiBQYXJhIGFzIHB1YmxpY2E/P2VzIHNlbSBpbmljaWF0aXZhcyBxdWUgc2VndWVtIGEgcG9sP3RpY2EgZGUgQWNlc3NvIEFiZXJ0bywgb3MgZGVwP3NpdG9zIApjb21wdWxzP3Jpb3MgbmVzc2UgcmVwb3NpdD9yaW8gbWFudD9tIG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBtYXMgbWFudD9tIGFjZXNzbyBpcnJlc3RyaXRvIAphbyBtZXRhZGFkb3MgZSB0ZXh0byBjb21wbGV0by4gQXNzaW0sIGEgYWNlaXRhPz9vIGRlc3NlIHRlcm1vIG4/byBuZWNlc3NpdGEgZGUgY29uc2VudGltZW50bwogcG9yIHBhcnRlIGRlIGF1dG9yZXMvZGV0ZW50b3JlcyBkb3MgZGlyZWl0b3MsIHBvciBlc3RhcmVtIGVtIGluaWNpYXRpdmFzIGRlIGFjZXNzbyBhYmVydG8uCg==Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-01T13:46:42Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv Uma abordagem deep learning para reconhecimento de expressões faciais.
title Uma abordagem deep learning para reconhecimento de expressões faciais.
spellingShingle Uma abordagem deep learning para reconhecimento de expressões faciais.
Canário, João Paulo Pereira de Sá
Ciência da Computação
Rede Neural de Convolução
Expressões Faciais
Mapas de Saliência
title_short Uma abordagem deep learning para reconhecimento de expressões faciais.
title_full Uma abordagem deep learning para reconhecimento de expressões faciais.
title_fullStr Uma abordagem deep learning para reconhecimento de expressões faciais.
title_full_unstemmed Uma abordagem deep learning para reconhecimento de expressões faciais.
title_sort Uma abordagem deep learning para reconhecimento de expressões faciais.
author Canário, João Paulo Pereira de Sá
author_facet Canário, João Paulo Pereira de Sá
author_role author
dc.contributor.author.fl_str_mv Canário, João Paulo Pereira de Sá
dc.contributor.advisor1.fl_str_mv Oliveira, Luciano Rebouças de
dc.contributor.referee1.fl_str_mv Rios, Tatiane Nogueira
Ferreira, Adonias Magdiel Silva
contributor_str_mv Oliveira, Luciano Rebouças de
Rios, Tatiane Nogueira
Ferreira, Adonias Magdiel Silva
dc.subject.cnpq.fl_str_mv Ciência da Computação
topic Ciência da Computação
Rede Neural de Convolução
Expressões Faciais
Mapas de Saliência
dc.subject.por.fl_str_mv Rede Neural de Convolução
Expressões Faciais
Mapas de Saliência
description Expressões faciais são o resultado de mudanças na musculatura facial em resposta aos estados emocionais e tem um papel fundamental na interação das pessoas. A partir dos estudos iniciados por Darwin, Paul Ekman desenvolveu um estudo sugerindo a existência de sete expressões faciais básicas: alegria, tristeza, medo, nojo, desdém, surpresa e raiva, além da expressão neutra. Posteriormente, no intuito de mensurar o comportamento facial de forma mais aprofundada, Ekman desenvolveu um sistema para medição de todos os movimentos musculares faciais e suas intensidades, o Facial Action Coding System (FACS). O FACS permitiu um avanço em pesquisas de novos métodos para reconhecimento de expressões faciais aplicados nas mais diversas áreas, como educação, psicologia, interação homem-máquina, monitoração de comportamento, dentre outros. O presente trabalho sugere uma nova abordagem para reconhecimento de expressões faciais combinando mapas de saliência para destacar as partes da face que mais concentram as expressões faciais (conspicuidade) e uma rede neural de convolução. A análises mostraram que o sistema proposto alcançou uma precisão média na identificação das 7 (sete) expressões faciais básicas de 90% (noventa por cento) sobre o Extended Cohn-Kanade Data Set. Quando comparado com os trabalhos do estado-da-arte relacionados, o sistema mostrou uma precisão média superior a todos, além de superar, em termos absolutos, todos os trabalhos em 3 (três) das 7 (sete) expressões, demonstrando um resultado promissor.
publishDate 2016
dc.date.submitted.none.fl_str_mv 2016-01-06
dc.date.accessioned.fl_str_mv 2016-06-03T23:39:15Z
dc.date.available.fl_str_mv 2016-06-03T23:39:15Z
dc.date.issued.fl_str_mv 2016-06-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufba.br/ri/handle/ri/19384
url http://repositorio.ufba.br/ri/handle/ri/19384
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto de Matemática. Departamento de Ciência da Computação
dc.publisher.program.fl_str_mv Mestrado Multiinstitucional em Ciência da Computação
dc.publisher.initials.fl_str_mv UFBA
dc.publisher.country.fl_str_mv brasil
publisher.none.fl_str_mv Instituto de Matemática. Departamento de Ciência da Computação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/19384/1/disserta%c3%a7%c3%a3o%20vers%c3%a3o%20final.pdf
https://repositorio.ufba.br/bitstream/ri/19384/2/license.txt
https://repositorio.ufba.br/bitstream/ri/19384/3/disserta%c3%a7%c3%a3o%20vers%c3%a3o%20final.pdf.txt
bitstream.checksum.fl_str_mv 8d49c3d821b0498b562d9afe5a2bc1f8
0d4b811ef71182510d2015daa7c8a900
8b96526e2572376c3ba0549364330155
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1808459514684375040