A guide to modern statistical analysis of immunological data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | http://www.repositorio.ufba.br/ri/handle/ri/1750 |
Resumo: | Background: The number of subjects that can be recruited in immunological studies and the number of immunological parameters that can be measured has increased rapidly over the past decade and is likely to continue to expand. Large and complex immunological datasets can now be used to investigate complex scientific questions, but to make the most of the potential in such data and to get the right answers sophisticated statistical approaches are necessary. Such approaches are used in many other scientific disciplines, but immunological studies on the whole still use simple statistical techniques for data analysis. Results: The paper provides an overview of the range of statistical methods that can be used to answer different immunological study questions. We discuss specific aspects of immunological studies and give examples of typical scientific questions related to immunological data. We review classical bivariate and multivariate statistical techniques (factor analysis, cluster analysis, discriminant analysis) and more advanced methods aimed to explore causal relationships (path analysis/structural equation modelling) and illustrate their application to immunological data. We show the main features of each method, the type of study question they can answer, the type of data they can be applied to, the assumptions required for each method and the software that can be used. Conclusion: This paper will help the immunologist to choose the correct statistical approach for a particular research question. |
id |
UFBA-2_9a17fa197c75e75003b56bcae6c551c2 |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/1750 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
Genser, BerndCooper, Philip JYazdanbakhsh, MariaBarreto, Mauricio LimaRodrigues, Laura CunhaGenser, BerndCooper, Philip JYazdanbakhsh, MariaBarreto, Mauricio LimaRodrigues, Laura Cunha2011-07-06T19:59:58Z2011-07-06T19:59:58Z20071471-2172http://www.repositorio.ufba.br/ri/handle/ri/17508:27Background: The number of subjects that can be recruited in immunological studies and the number of immunological parameters that can be measured has increased rapidly over the past decade and is likely to continue to expand. Large and complex immunological datasets can now be used to investigate complex scientific questions, but to make the most of the potential in such data and to get the right answers sophisticated statistical approaches are necessary. Such approaches are used in many other scientific disciplines, but immunological studies on the whole still use simple statistical techniques for data analysis. Results: The paper provides an overview of the range of statistical methods that can be used to answer different immunological study questions. We discuss specific aspects of immunological studies and give examples of typical scientific questions related to immunological data. We review classical bivariate and multivariate statistical techniques (factor analysis, cluster analysis, discriminant analysis) and more advanced methods aimed to explore causal relationships (path analysis/structural equation modelling) and illustrate their application to immunological data. We show the main features of each method, the type of study question they can answer, the type of data they can be applied to, the assumptions required for each method and the software that can be used. Conclusion: This paper will help the immunologist to choose the correct statistical approach for a particular research question.Submitted by Rodrigo Meirelles (rodrigomei@ufba.br) on 2011-07-06T19:59:58Z No. of bitstreams: 1 artigo internac.2.livre 2007.pdf: 481471 bytes, checksum: cb52be38e1d28be2fe630298ccdc97ae (MD5)Made available in DSpace on 2011-07-06T19:59:58Z (GMT). No. of bitstreams: 1 artigo internac.2.livre 2007.pdf: 481471 bytes, checksum: cb52be38e1d28be2fe630298ccdc97ae (MD5) Previous issue date: 2007A guide to modern statistical analysis of immunological dataBMC Immunologyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleengreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAinfo:eu-repo/semantics/openAccessORIGINALartigo internac.2.livre 2007.pdfartigo internac.2.livre 2007.pdfapplication/pdf481471https://repositorio.ufba.br/bitstream/ri/1750/1/artigo%20internac.2.livre%202007.pdfcb52be38e1d28be2fe630298ccdc97aeMD51LICENSElicense.txtlicense.txttext/plain1900https://repositorio.ufba.br/bitstream/ri/1750/2/license.txt77c838aad492afa41e8bf3ca1ee78e0cMD52TEXTartigo internac.2.livre 2007.pdf.txtartigo internac.2.livre 2007.pdf.txtExtracted texttext/plain70857https://repositorio.ufba.br/bitstream/ri/1750/3/artigo%20internac.2.livre%202007.pdf.txt6c3e2a6427a908714d97164a0910c260MD53ri/17502022-07-05 14:03:28.71oai:repositorio.ufba.br:ri/1750TGljZW5zZSBncmFudGVkIGJ5IFJvZHJpZ28gTWVpcmVsbGVzIChyb2RyaWdvbWVpQHVmYmEuYnIpIG9uIDIwMTEtMDctMDZUMTk6NTk6NThaIChHTVQpOgoKVGVybW8gZGUgTGljZW7Dp2EsIG7Do28gZXhjbHVzaXZvLCBwYXJhIG8gZGVww7NzaXRvIG5vIApyZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBCgogICAgUGVsbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvIGRlIGRvY3VtZW50b3MsIG8gYXV0b3Igb3Ugc2V1CnJlcHJlc2VudGFudGUgbGVnYWwsIGFvIGFjZWl0YXIgZXNzZSB0ZXJtbyBkZSBsaWNlbsOnYSwgY29uY2VkZSBhbwpSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkYSBCYWhpYSBvIGRpcmVpdG8KZGUgbWFudGVyIHVtYSBjw7NwaWEgZW0gc2V1IHJlcG9zaXTDs3JpbyBjb20gYSBmaW5hbGlkYWRlLCBwcmltZWlyYSwgCmRlIHByZXNlcnZhw6fDo28uIEVzc2UgdGVybW8sIG7Do28gZXhjbHVzaXZvLCBtYW50w6ptIG9zIGRpcmVpdG9zIGRlIAphdXRvci9jb3B5cmlnaHQsIG1hcyBlbnRlbmRlIG8gZG9jdW1lbnRvIGNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsCiBkZXNzYSBVbml2ZXJzaWRhZGUuIAoKICAgIFBhcmEgb3MgZG9jdW1lbnRvcyBwdWJsaWNhZG9zIGNvbSByZXBhc3NlIGRlIGRpcmVpdG9zIGRlIApkaXN0cmlidWnDp8OjbywgZXNzZSB0ZXJtbyBkZSBsaWNlbsOnYSBlbnRlbmRlIHF1ZTogCgogICAgTWFudGVuZG8gb3PCoCBkaXJlaXRvcyBhdXRvcmFpcywgcmVwYXNzYWRvcyBhIHRlcmNlaXJvcywgZW0gY2FzbyAKZGUgcHVibGljYcOnw7VlcywgbyByZXBvc2l0w7NyaW8gcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIAppbnRlZ3JhbCwgbWFzIGxpYmVyYSBhcyBpbmZvcm1hw6fDtWVzIHNvYnJlIG8gZG9jdW1lbnRvIChNZXRhZGFkb3MgZGVzY3JpdGl2b3MpLgogRGVzdGEgZm9ybWEsIGF0ZW5kZW5kbyBhb3MgYW5zZWlvcyBkZXNzYSB1bml2ZXJzaWRhZGUgCmVtIG1hbnRlciBzdWEgcHJvZHXDp8OjbyBjaWVudMOtwq1maWNhIGNvbSBhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcGVsb3MgCmVkaXRvcmVzIGRlIHBlcmnDs2RpY29zLiAKCiAgICBQYXJhIGFzIHB1YmxpY2HDp8O1ZXMgZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbMOtwq10aWNhIGRlIApBY2Vzc28gQWJlcnRvLCBvcyBkZXDDs3NpdG9zIGNvbXB1bHPDs3Jpb3MgbmVzc2UgcmVwb3NpdMOzcmlvIG1hbnTDqm0gCm9zIGRpcmVpdG9zIGF1dG9yYWlzLCBtYXMgbWFudMOqbSBvIGFjZXNzbyBpcnJlc3RyaXRvIGFvIG1ldGFkYWRvcyAKZSB0ZXh0byBjb21wbGV0by4gQXNzaW0sIGEgYWNlaXRhw6fDo28gZGVzc2UgdGVybW8gbsOjbyBuZWNlc3NpdGEgZGUgCmNvbnNlbnRpbWVudG8gcG9yIHBhcnRlIGRlIGF1dG9yZXMvZGV0ZW50b3JlcyBkb3MgZGlyZWl0b3MsIHBvciAKZXN0YXJlbSBlbSBpbmljaWF0aXZhcyBkZSBhY2Vzc28gYWJlcnRvLgoKICAgIEVtIGFtYm9zIG8gY2FzbywgZXNzZSB0ZXJtbyBkZSBsaWNlbsOnYSwgcG9kZSBzZXIgYWNlaXRvIHBlbG8gCmF1dG9yLCBkZXRlbnRvcmVzIGRlIGRpcmVpdG9zIGUvb3UgdGVyY2Vpcm9zIGFtcGFyYWRvcyBwZWxhIAp1bml2ZXJzaWRhZGUuIERldmlkbyBhb3MgZGlmZXJlbnRlcyBwcm9jZXNzb3MgcGVsbyBxdWFsIGEgc3VibWlzc8OjbyAKcG9kZSBvY29ycmVyLCBvIHJlcG9zaXTDs3JpbyBwZXJtaXRlIGEgYWNlaXRhw6fDo28gZGEgbGljZW7Dp2EgcG9yIAp0ZXJjZWlyb3MsIHNvbWVudGUgbm9zIGNhc29zIGRlIGRvY3VtZW50b3MgcHJvZHV6aWRvcyBwb3IgaW50ZWdyYW50ZXMgCmRhIFVGQkEgZSBzdWJtZXRpZG9zIHBvciBwZXNzb2FzIGFtcGFyYWRhcyBwb3IgZXN0YSBpbnN0aXR1acOnw6NvCg==Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:03:28Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
A guide to modern statistical analysis of immunological data |
dc.title.alternative.pt_BR.fl_str_mv |
BMC Immunology |
title |
A guide to modern statistical analysis of immunological data |
spellingShingle |
A guide to modern statistical analysis of immunological data Genser, Bernd |
title_short |
A guide to modern statistical analysis of immunological data |
title_full |
A guide to modern statistical analysis of immunological data |
title_fullStr |
A guide to modern statistical analysis of immunological data |
title_full_unstemmed |
A guide to modern statistical analysis of immunological data |
title_sort |
A guide to modern statistical analysis of immunological data |
author |
Genser, Bernd |
author_facet |
Genser, Bernd Cooper, Philip J Yazdanbakhsh, Maria Barreto, Mauricio Lima Rodrigues, Laura Cunha |
author_role |
author |
author2 |
Cooper, Philip J Yazdanbakhsh, Maria Barreto, Mauricio Lima Rodrigues, Laura Cunha |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Genser, Bernd Cooper, Philip J Yazdanbakhsh, Maria Barreto, Mauricio Lima Rodrigues, Laura Cunha Genser, Bernd Cooper, Philip J Yazdanbakhsh, Maria Barreto, Mauricio Lima Rodrigues, Laura Cunha |
description |
Background: The number of subjects that can be recruited in immunological studies and the number of immunological parameters that can be measured has increased rapidly over the past decade and is likely to continue to expand. Large and complex immunological datasets can now be used to investigate complex scientific questions, but to make the most of the potential in such data and to get the right answers sophisticated statistical approaches are necessary. Such approaches are used in many other scientific disciplines, but immunological studies on the whole still use simple statistical techniques for data analysis. Results: The paper provides an overview of the range of statistical methods that can be used to answer different immunological study questions. We discuss specific aspects of immunological studies and give examples of typical scientific questions related to immunological data. We review classical bivariate and multivariate statistical techniques (factor analysis, cluster analysis, discriminant analysis) and more advanced methods aimed to explore causal relationships (path analysis/structural equation modelling) and illustrate their application to immunological data. We show the main features of each method, the type of study question they can answer, the type of data they can be applied to, the assumptions required for each method and the software that can be used. Conclusion: This paper will help the immunologist to choose the correct statistical approach for a particular research question. |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007 |
dc.date.accessioned.fl_str_mv |
2011-07-06T19:59:58Z |
dc.date.available.fl_str_mv |
2011-07-06T19:59:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufba.br/ri/handle/ri/1750 |
dc.identifier.issn.none.fl_str_mv |
1471-2172 |
dc.identifier.number.pt_BR.fl_str_mv |
8:27 |
identifier_str_mv |
1471-2172 8:27 |
url |
http://www.repositorio.ufba.br/ri/handle/ri/1750 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/1750/1/artigo%20internac.2.livre%202007.pdf https://repositorio.ufba.br/bitstream/ri/1750/2/license.txt https://repositorio.ufba.br/bitstream/ri/1750/3/artigo%20internac.2.livre%202007.pdf.txt |
bitstream.checksum.fl_str_mv |
cb52be38e1d28be2fe630298ccdc97ae 77c838aad492afa41e8bf3ca1ee78e0c 6c3e2a6427a908714d97164a0910c260 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459371761369088 |