A guide to modern statistical analysis of immunological data

Detalhes bibliográficos
Autor(a) principal: Genser, Bernd
Data de Publicação: 2007
Outros Autores: Cooper, Philip J, Yazdanbakhsh, Maria, Barreto, Mauricio Lima, Rodrigues, Laura Cunha
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFBA
Texto Completo: http://www.repositorio.ufba.br/ri/handle/ri/1750
Resumo: Background: The number of subjects that can be recruited in immunological studies and the number of immunological parameters that can be measured has increased rapidly over the past decade and is likely to continue to expand. Large and complex immunological datasets can now be used to investigate complex scientific questions, but to make the most of the potential in such data and to get the right answers sophisticated statistical approaches are necessary. Such approaches are used in many other scientific disciplines, but immunological studies on the whole still use simple statistical techniques for data analysis. Results: The paper provides an overview of the range of statistical methods that can be used to answer different immunological study questions. We discuss specific aspects of immunological studies and give examples of typical scientific questions related to immunological data. We review classical bivariate and multivariate statistical techniques (factor analysis, cluster analysis, discriminant analysis) and more advanced methods aimed to explore causal relationships (path analysis/structural equation modelling) and illustrate their application to immunological data. We show the main features of each method, the type of study question they can answer, the type of data they can be applied to, the assumptions required for each method and the software that can be used. Conclusion: This paper will help the immunologist to choose the correct statistical approach for a particular research question.
id UFBA-2_9a17fa197c75e75003b56bcae6c551c2
oai_identifier_str oai:repositorio.ufba.br:ri/1750
network_acronym_str UFBA-2
network_name_str Repositório Institucional da UFBA
repository_id_str 1932
spelling Genser, BerndCooper, Philip JYazdanbakhsh, MariaBarreto, Mauricio LimaRodrigues, Laura CunhaGenser, BerndCooper, Philip JYazdanbakhsh, MariaBarreto, Mauricio LimaRodrigues, Laura Cunha2011-07-06T19:59:58Z2011-07-06T19:59:58Z20071471-2172http://www.repositorio.ufba.br/ri/handle/ri/17508:27Background: The number of subjects that can be recruited in immunological studies and the number of immunological parameters that can be measured has increased rapidly over the past decade and is likely to continue to expand. Large and complex immunological datasets can now be used to investigate complex scientific questions, but to make the most of the potential in such data and to get the right answers sophisticated statistical approaches are necessary. Such approaches are used in many other scientific disciplines, but immunological studies on the whole still use simple statistical techniques for data analysis. Results: The paper provides an overview of the range of statistical methods that can be used to answer different immunological study questions. We discuss specific aspects of immunological studies and give examples of typical scientific questions related to immunological data. We review classical bivariate and multivariate statistical techniques (factor analysis, cluster analysis, discriminant analysis) and more advanced methods aimed to explore causal relationships (path analysis/structural equation modelling) and illustrate their application to immunological data. We show the main features of each method, the type of study question they can answer, the type of data they can be applied to, the assumptions required for each method and the software that can be used. Conclusion: This paper will help the immunologist to choose the correct statistical approach for a particular research question.Submitted by Rodrigo Meirelles (rodrigomei@ufba.br) on 2011-07-06T19:59:58Z No. of bitstreams: 1 artigo internac.2.livre 2007.pdf: 481471 bytes, checksum: cb52be38e1d28be2fe630298ccdc97ae (MD5)Made available in DSpace on 2011-07-06T19:59:58Z (GMT). No. of bitstreams: 1 artigo internac.2.livre 2007.pdf: 481471 bytes, checksum: cb52be38e1d28be2fe630298ccdc97ae (MD5) Previous issue date: 2007A guide to modern statistical analysis of immunological dataBMC Immunologyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleengreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAinfo:eu-repo/semantics/openAccessORIGINALartigo internac.2.livre 2007.pdfartigo internac.2.livre 2007.pdfapplication/pdf481471https://repositorio.ufba.br/bitstream/ri/1750/1/artigo%20internac.2.livre%202007.pdfcb52be38e1d28be2fe630298ccdc97aeMD51LICENSElicense.txtlicense.txttext/plain1900https://repositorio.ufba.br/bitstream/ri/1750/2/license.txt77c838aad492afa41e8bf3ca1ee78e0cMD52TEXTartigo internac.2.livre 2007.pdf.txtartigo internac.2.livre 2007.pdf.txtExtracted texttext/plain70857https://repositorio.ufba.br/bitstream/ri/1750/3/artigo%20internac.2.livre%202007.pdf.txt6c3e2a6427a908714d97164a0910c260MD53ri/17502022-07-05 14:03:28.71oai:repositorio.ufba.br:ri/1750TGljZW5zZSBncmFudGVkIGJ5IFJvZHJpZ28gTWVpcmVsbGVzIChyb2RyaWdvbWVpQHVmYmEuYnIpIG9uIDIwMTEtMDctMDZUMTk6NTk6NThaIChHTVQpOgoKVGVybW8gZGUgTGljZW7Dp2EsIG7Do28gZXhjbHVzaXZvLCBwYXJhIG8gZGVww7NzaXRvIG5vIApyZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBCgogICAgUGVsbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvIGRlIGRvY3VtZW50b3MsIG8gYXV0b3Igb3Ugc2V1CnJlcHJlc2VudGFudGUgbGVnYWwsIGFvIGFjZWl0YXIgZXNzZSB0ZXJtbyBkZSBsaWNlbsOnYSwgY29uY2VkZSBhbwpSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkYSBCYWhpYSBvIGRpcmVpdG8KZGUgbWFudGVyIHVtYSBjw7NwaWEgZW0gc2V1IHJlcG9zaXTDs3JpbyBjb20gYSBmaW5hbGlkYWRlLCBwcmltZWlyYSwgCmRlIHByZXNlcnZhw6fDo28uIEVzc2UgdGVybW8sIG7Do28gZXhjbHVzaXZvLCBtYW50w6ptIG9zIGRpcmVpdG9zIGRlIAphdXRvci9jb3B5cmlnaHQsIG1hcyBlbnRlbmRlIG8gZG9jdW1lbnRvIGNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsCiBkZXNzYSBVbml2ZXJzaWRhZGUuIAoKICAgIFBhcmEgb3MgZG9jdW1lbnRvcyBwdWJsaWNhZG9zIGNvbSByZXBhc3NlIGRlIGRpcmVpdG9zIGRlIApkaXN0cmlidWnDp8OjbywgZXNzZSB0ZXJtbyBkZSBsaWNlbsOnYSBlbnRlbmRlIHF1ZTogCgogICAgTWFudGVuZG8gb3PCoCBkaXJlaXRvcyBhdXRvcmFpcywgcmVwYXNzYWRvcyBhIHRlcmNlaXJvcywgZW0gY2FzbyAKZGUgcHVibGljYcOnw7VlcywgbyByZXBvc2l0w7NyaW8gcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIAppbnRlZ3JhbCwgbWFzIGxpYmVyYSBhcyBpbmZvcm1hw6fDtWVzIHNvYnJlIG8gZG9jdW1lbnRvIChNZXRhZGFkb3MgZGVzY3JpdGl2b3MpLgogRGVzdGEgZm9ybWEsIGF0ZW5kZW5kbyBhb3MgYW5zZWlvcyBkZXNzYSB1bml2ZXJzaWRhZGUgCmVtIG1hbnRlciBzdWEgcHJvZHXDp8OjbyBjaWVudMOtwq1maWNhIGNvbSBhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcGVsb3MgCmVkaXRvcmVzIGRlIHBlcmnDs2RpY29zLiAKCiAgICBQYXJhIGFzIHB1YmxpY2HDp8O1ZXMgZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbMOtwq10aWNhIGRlIApBY2Vzc28gQWJlcnRvLCBvcyBkZXDDs3NpdG9zIGNvbXB1bHPDs3Jpb3MgbmVzc2UgcmVwb3NpdMOzcmlvIG1hbnTDqm0gCm9zIGRpcmVpdG9zIGF1dG9yYWlzLCBtYXMgbWFudMOqbSBvIGFjZXNzbyBpcnJlc3RyaXRvIGFvIG1ldGFkYWRvcyAKZSB0ZXh0byBjb21wbGV0by4gQXNzaW0sIGEgYWNlaXRhw6fDo28gZGVzc2UgdGVybW8gbsOjbyBuZWNlc3NpdGEgZGUgCmNvbnNlbnRpbWVudG8gcG9yIHBhcnRlIGRlIGF1dG9yZXMvZGV0ZW50b3JlcyBkb3MgZGlyZWl0b3MsIHBvciAKZXN0YXJlbSBlbSBpbmljaWF0aXZhcyBkZSBhY2Vzc28gYWJlcnRvLgoKICAgIEVtIGFtYm9zIG8gY2FzbywgZXNzZSB0ZXJtbyBkZSBsaWNlbsOnYSwgcG9kZSBzZXIgYWNlaXRvIHBlbG8gCmF1dG9yLCBkZXRlbnRvcmVzIGRlIGRpcmVpdG9zIGUvb3UgdGVyY2Vpcm9zIGFtcGFyYWRvcyBwZWxhIAp1bml2ZXJzaWRhZGUuIERldmlkbyBhb3MgZGlmZXJlbnRlcyBwcm9jZXNzb3MgcGVsbyBxdWFsIGEgc3VibWlzc8OjbyAKcG9kZSBvY29ycmVyLCBvIHJlcG9zaXTDs3JpbyBwZXJtaXRlIGEgYWNlaXRhw6fDo28gZGEgbGljZW7Dp2EgcG9yIAp0ZXJjZWlyb3MsIHNvbWVudGUgbm9zIGNhc29zIGRlIGRvY3VtZW50b3MgcHJvZHV6aWRvcyBwb3IgaW50ZWdyYW50ZXMgCmRhIFVGQkEgZSBzdWJtZXRpZG9zIHBvciBwZXNzb2FzIGFtcGFyYWRhcyBwb3IgZXN0YSBpbnN0aXR1acOnw6NvCg==Repositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-07-05T17:03:28Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false
dc.title.pt_BR.fl_str_mv A guide to modern statistical analysis of immunological data
dc.title.alternative.pt_BR.fl_str_mv BMC Immunology
title A guide to modern statistical analysis of immunological data
spellingShingle A guide to modern statistical analysis of immunological data
Genser, Bernd
title_short A guide to modern statistical analysis of immunological data
title_full A guide to modern statistical analysis of immunological data
title_fullStr A guide to modern statistical analysis of immunological data
title_full_unstemmed A guide to modern statistical analysis of immunological data
title_sort A guide to modern statistical analysis of immunological data
author Genser, Bernd
author_facet Genser, Bernd
Cooper, Philip J
Yazdanbakhsh, Maria
Barreto, Mauricio Lima
Rodrigues, Laura Cunha
author_role author
author2 Cooper, Philip J
Yazdanbakhsh, Maria
Barreto, Mauricio Lima
Rodrigues, Laura Cunha
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Genser, Bernd
Cooper, Philip J
Yazdanbakhsh, Maria
Barreto, Mauricio Lima
Rodrigues, Laura Cunha
Genser, Bernd
Cooper, Philip J
Yazdanbakhsh, Maria
Barreto, Mauricio Lima
Rodrigues, Laura Cunha
description Background: The number of subjects that can be recruited in immunological studies and the number of immunological parameters that can be measured has increased rapidly over the past decade and is likely to continue to expand. Large and complex immunological datasets can now be used to investigate complex scientific questions, but to make the most of the potential in such data and to get the right answers sophisticated statistical approaches are necessary. Such approaches are used in many other scientific disciplines, but immunological studies on the whole still use simple statistical techniques for data analysis. Results: The paper provides an overview of the range of statistical methods that can be used to answer different immunological study questions. We discuss specific aspects of immunological studies and give examples of typical scientific questions related to immunological data. We review classical bivariate and multivariate statistical techniques (factor analysis, cluster analysis, discriminant analysis) and more advanced methods aimed to explore causal relationships (path analysis/structural equation modelling) and illustrate their application to immunological data. We show the main features of each method, the type of study question they can answer, the type of data they can be applied to, the assumptions required for each method and the software that can be used. Conclusion: This paper will help the immunologist to choose the correct statistical approach for a particular research question.
publishDate 2007
dc.date.issued.fl_str_mv 2007
dc.date.accessioned.fl_str_mv 2011-07-06T19:59:58Z
dc.date.available.fl_str_mv 2011-07-06T19:59:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.ufba.br/ri/handle/ri/1750
dc.identifier.issn.none.fl_str_mv 1471-2172
dc.identifier.number.pt_BR.fl_str_mv 8:27
identifier_str_mv 1471-2172
8:27
url http://www.repositorio.ufba.br/ri/handle/ri/1750
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFBA
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Repositório Institucional da UFBA
collection Repositório Institucional da UFBA
bitstream.url.fl_str_mv https://repositorio.ufba.br/bitstream/ri/1750/1/artigo%20internac.2.livre%202007.pdf
https://repositorio.ufba.br/bitstream/ri/1750/2/license.txt
https://repositorio.ufba.br/bitstream/ri/1750/3/artigo%20internac.2.livre%202007.pdf.txt
bitstream.checksum.fl_str_mv cb52be38e1d28be2fe630298ccdc97ae
77c838aad492afa41e8bf3ca1ee78e0c
6c3e2a6427a908714d97164a0910c260
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv
_version_ 1808459371761369088