A estrutura do grupo adjunto e a propriedade do normalizador
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFBA |
Texto Completo: | http://repositorio.ufba.br/ri/handle/ri/22836 |
Resumo: | Em um anel R, o conjunto de todos os elementos quaserregulares determina o, assim chamado, grupo adjunto G, cuja operação, conhecida como círculo, foi definida por S. Perlis como x_y = x+y+xy: Este trabalho, tem como objetivo determinar a estrutura do grupo adjunto G de um anel finito R e verificar a validade da propriedade do normalizador em anéis de grupo integrais (Nor) com respeito ao grupo geral linear. Explorando a decomposição do anel R em suas pi-componentes, concluímos que G é produto direto dos grupos adjuntos, Gpi , em cada pi-componente Rpi do anel; demonstraremos então, que para cada fator Gpi , o quociente Gpi=pRpi , admite uma decomposição como o produto semidireto (munido da operação círculo) de Jpi=pRpi , em que Jpi é o radical de Jacobson do anel Rpi , por um produto direto de grupos gerais lineares. Uma vez estabelecida esta estrutura, aplicamos técnicas próprias da teoria de anéis de grupo integrais e mostramos a validade de (Nor) para o grupo geral linear, GL(n; Fqi), onde Fqi é um corpo finito e qi = PI n. Provamos que vale (Nor) para cada fator GL(n; Fqi) e portanto concluímos que o produto direto desses fatores, é solução para (Nor). |
id |
UFBA-2_cbb2edc1e015fc7812e964aff07cfec1 |
---|---|
oai_identifier_str |
oai:repositorio.ufba.br:ri/22836 |
network_acronym_str |
UFBA-2 |
network_name_str |
Repositório Institucional da UFBA |
repository_id_str |
1932 |
spelling |
Matos, Márcia Graci de OliveiraLobão, Thierry Corrêa PetitLobão, Thierry Corrêa PetitSica, CarmelaSouza, Manuela da SilvaVeloso, Paula MurgelFerraz, Raul Antonio2017-06-07T11:05:21Z2017-06-07T11:05:21Z2017-06-072016-02-18http://repositorio.ufba.br/ri/handle/ri/22836Em um anel R, o conjunto de todos os elementos quaserregulares determina o, assim chamado, grupo adjunto G, cuja operação, conhecida como círculo, foi definida por S. Perlis como x_y = x+y+xy: Este trabalho, tem como objetivo determinar a estrutura do grupo adjunto G de um anel finito R e verificar a validade da propriedade do normalizador em anéis de grupo integrais (Nor) com respeito ao grupo geral linear. Explorando a decomposição do anel R em suas pi-componentes, concluímos que G é produto direto dos grupos adjuntos, Gpi , em cada pi-componente Rpi do anel; demonstraremos então, que para cada fator Gpi , o quociente Gpi=pRpi , admite uma decomposição como o produto semidireto (munido da operação círculo) de Jpi=pRpi , em que Jpi é o radical de Jacobson do anel Rpi , por um produto direto de grupos gerais lineares. Uma vez estabelecida esta estrutura, aplicamos técnicas próprias da teoria de anéis de grupo integrais e mostramos a validade de (Nor) para o grupo geral linear, GL(n; Fqi), onde Fqi é um corpo finito e qi = PI n. Provamos que vale (Nor) para cada fator GL(n; Fqi) e portanto concluímos que o produto direto desses fatores, é solução para (Nor).Submitted by Santos Davilene (davilenes@ufba.br) on 2017-05-31T21:46:52Z No. of bitstreams: 1 Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5)Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-06-07T11:05:21Z (GMT) No. of bitstreams: 1 Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5)Made available in DSpace on 2017-06-07T11:05:21Z (GMT). No. of bitstreams: 1 Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5)Matemática PuraAnéis de grupo integraisValidade da propriedade do normalizadorRadical de JacobsonGrupo Adjunto - EstruturaGrupo geral linearPropriedade do normalizadorA estrutura do grupo adjunto e a propriedade do normalizadorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisInstituto de Matemática. Departamento de MatemáticaDoutorado em Matemática UFBA/UFALUFBABrasilinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBALICENSElicense.txtlicense.txttext/plain1383https://repositorio.ufba.br/bitstream/ri/22836/2/license.txt05eca2f01d0b3307819d0369dab18a34MD52ORIGINALTese_Marcia_Graci_versao_final.pdfTese_Marcia_Graci_versao_final.pdfTeseapplication/pdf1885611https://repositorio.ufba.br/bitstream/ri/22836/1/Tese_Marcia_Graci_versao_final.pdff7ea36e1d86a3f0ae4ecc282f7faf2eaMD51TEXTTese_Marcia_Graci_versao_final.pdf.txtTese_Marcia_Graci_versao_final.pdf.txtExtracted texttext/plain100954https://repositorio.ufba.br/bitstream/ri/22836/3/Tese_Marcia_Graci_versao_final.pdf.txtbf4824742c0ba16ab8172b51dab1bb59MD53ri/228362022-03-10 15:02:14.96oai:repositorio.ufba.br:ri/22836VGVybW8gZGUgTGljZW7Dp2EsIG7Do28gZXhjbHVzaXZvLCBwYXJhIG8gZGVww7NzaXRvIG5vIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQkEuCgogUGVsbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvIGRlIGRvY3VtZW50b3MsIG8gYXV0b3Igb3Ugc2V1IHJlcHJlc2VudGFudGUgbGVnYWwsIGFvIGFjZWl0YXIgCmVzc2UgdGVybW8gZGUgbGljZW7Dp2EsIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGEgQmFoaWEgCm8gZGlyZWl0byBkZSBtYW50ZXIgdW1hIGPDs3BpYSBlbSBzZXUgcmVwb3NpdMOzcmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCBkZSBwcmVzZXJ2YcOnw6NvLiAKRXNzZXMgdGVybW9zLCBuw6NvIGV4Y2x1c2l2b3MsIG1hbnTDqm0gb3MgZGlyZWl0b3MgZGUgYXV0b3IvY29weXJpZ2h0LCBtYXMgZW50ZW5kZSBvIGRvY3VtZW50byAKY29tbyBwYXJ0ZSBkbyBhY2Vydm8gaW50ZWxlY3R1YWwgZGVzc2EgVW5pdmVyc2lkYWRlLgoKIFBhcmEgb3MgZG9jdW1lbnRvcyBwdWJsaWNhZG9zIGNvbSByZXBhc3NlIGRlIGRpcmVpdG9zIGRlIGRpc3RyaWJ1acOnw6NvLCBlc3NlIHRlcm1vIGRlIGxpY2Vuw6dhIAplbnRlbmRlIHF1ZToKCiBNYW50ZW5kbyBvcyBkaXJlaXRvcyBhdXRvcmFpcywgcmVwYXNzYWRvcyBhIHRlcmNlaXJvcywgZW0gY2FzbyBkZSBwdWJsaWNhw6fDtWVzLCBvIHJlcG9zaXTDs3Jpbwpwb2RlIHJlc3RyaW5naXIgbyBhY2Vzc28gYW8gdGV4dG8gaW50ZWdyYWwsIG1hcyBsaWJlcmEgYXMgaW5mb3JtYcOnw7VlcyBzb2JyZSBvIGRvY3VtZW50bwooTWV0YWRhZG9zIGVzY3JpdGl2b3MpLgoKIERlc3RhIGZvcm1hLCBhdGVuZGVuZG8gYW9zIGFuc2Vpb3MgZGVzc2EgdW5pdmVyc2lkYWRlIGVtIG1hbnRlciBzdWEgcHJvZHXDp8OjbyBjaWVudMOtZmljYSBjb20gCmFzIHJlc3RyacOnw7VlcyBpbXBvc3RhcyBwZWxvcyBlZGl0b3JlcyBkZSBwZXJpw7NkaWNvcy4KCiBQYXJhIGFzIHB1YmxpY2HDp8O1ZXMgc2VtIGluaWNpYXRpdmFzIHF1ZSBzZWd1ZW0gYSBwb2zDrXRpY2EgZGUgQWNlc3NvIEFiZXJ0bywgb3MgZGVww7NzaXRvcyAKY29tcHVsc8OzcmlvcyBuZXNzZSByZXBvc2l0w7NyaW8gbWFudMOqbSBvcyBkaXJlaXRvcyBhdXRvcmFpcywgbWFzIG1hbnTDqm0gYWNlc3NvIGlycmVzdHJpdG8gCmFvIG1ldGFkYWRvcyBlIHRleHRvIGNvbXBsZXRvLiBBc3NpbSwgYSBhY2VpdGHDp8OjbyBkZXNzZSB0ZXJtbyBuw6NvIG5lY2Vzc2l0YSBkZSBjb25zZW50aW1lbnRvCiBwb3IgcGFydGUgZGUgYXV0b3Jlcy9kZXRlbnRvcmVzIGRvcyBkaXJlaXRvcywgcG9yIGVzdGFyZW0gZW0gaW5pY2lhdGl2YXMgZGUgYWNlc3NvIGFiZXJ0by4KRepositório InstitucionalPUBhttp://192.188.11.11:8080/oai/requestopendoar:19322022-03-10T18:02:14Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
dc.title.pt_BR.fl_str_mv |
A estrutura do grupo adjunto e a propriedade do normalizador |
title |
A estrutura do grupo adjunto e a propriedade do normalizador |
spellingShingle |
A estrutura do grupo adjunto e a propriedade do normalizador Matos, Márcia Graci de Oliveira Matemática Pura Anéis de grupo integrais Validade da propriedade do normalizador Radical de Jacobson Grupo Adjunto - Estrutura Grupo geral linear Propriedade do normalizador |
title_short |
A estrutura do grupo adjunto e a propriedade do normalizador |
title_full |
A estrutura do grupo adjunto e a propriedade do normalizador |
title_fullStr |
A estrutura do grupo adjunto e a propriedade do normalizador |
title_full_unstemmed |
A estrutura do grupo adjunto e a propriedade do normalizador |
title_sort |
A estrutura do grupo adjunto e a propriedade do normalizador |
author |
Matos, Márcia Graci de Oliveira |
author_facet |
Matos, Márcia Graci de Oliveira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Matos, Márcia Graci de Oliveira |
dc.contributor.advisor1.fl_str_mv |
Lobão, Thierry Corrêa Petit |
dc.contributor.referee1.fl_str_mv |
Lobão, Thierry Corrêa Petit Sica, Carmela Souza, Manuela da Silva Veloso, Paula Murgel Ferraz, Raul Antonio |
contributor_str_mv |
Lobão, Thierry Corrêa Petit Lobão, Thierry Corrêa Petit Sica, Carmela Souza, Manuela da Silva Veloso, Paula Murgel Ferraz, Raul Antonio |
dc.subject.cnpq.fl_str_mv |
Matemática Pura |
topic |
Matemática Pura Anéis de grupo integrais Validade da propriedade do normalizador Radical de Jacobson Grupo Adjunto - Estrutura Grupo geral linear Propriedade do normalizador |
dc.subject.por.fl_str_mv |
Anéis de grupo integrais Validade da propriedade do normalizador Radical de Jacobson Grupo Adjunto - Estrutura Grupo geral linear Propriedade do normalizador |
description |
Em um anel R, o conjunto de todos os elementos quaserregulares determina o, assim chamado, grupo adjunto G, cuja operação, conhecida como círculo, foi definida por S. Perlis como x_y = x+y+xy: Este trabalho, tem como objetivo determinar a estrutura do grupo adjunto G de um anel finito R e verificar a validade da propriedade do normalizador em anéis de grupo integrais (Nor) com respeito ao grupo geral linear. Explorando a decomposição do anel R em suas pi-componentes, concluímos que G é produto direto dos grupos adjuntos, Gpi , em cada pi-componente Rpi do anel; demonstraremos então, que para cada fator Gpi , o quociente Gpi=pRpi , admite uma decomposição como o produto semidireto (munido da operação círculo) de Jpi=pRpi , em que Jpi é o radical de Jacobson do anel Rpi , por um produto direto de grupos gerais lineares. Uma vez estabelecida esta estrutura, aplicamos técnicas próprias da teoria de anéis de grupo integrais e mostramos a validade de (Nor) para o grupo geral linear, GL(n; Fqi), onde Fqi é um corpo finito e qi = PI n. Provamos que vale (Nor) para cada fator GL(n; Fqi) e portanto concluímos que o produto direto desses fatores, é solução para (Nor). |
publishDate |
2016 |
dc.date.submitted.none.fl_str_mv |
2016-02-18 |
dc.date.accessioned.fl_str_mv |
2017-06-07T11:05:21Z |
dc.date.available.fl_str_mv |
2017-06-07T11:05:21Z |
dc.date.issued.fl_str_mv |
2017-06-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufba.br/ri/handle/ri/22836 |
url |
http://repositorio.ufba.br/ri/handle/ri/22836 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Instituto de Matemática. Departamento de Matemática |
dc.publisher.program.fl_str_mv |
Doutorado em Matemática UFBA/UFAL |
dc.publisher.initials.fl_str_mv |
UFBA |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Instituto de Matemática. Departamento de Matemática |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Repositório Institucional da UFBA |
collection |
Repositório Institucional da UFBA |
bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/22836/2/license.txt https://repositorio.ufba.br/bitstream/ri/22836/1/Tese_Marcia_Graci_versao_final.pdf https://repositorio.ufba.br/bitstream/ri/22836/3/Tese_Marcia_Graci_versao_final.pdf.txt |
bitstream.checksum.fl_str_mv |
05eca2f01d0b3307819d0369dab18a34 f7ea36e1d86a3f0ae4ecc282f7faf2ea bf4824742c0ba16ab8172b51dab1bb59 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
|
_version_ |
1808459539595395072 |