Unidades Hipercentrais em Anéis de Grupo.

Detalhes bibliográficos
Autor(a) principal: Iwaki, Edson Ryoji Okamoto
Data de Publicação: 2000
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052007-112821/
Resumo: Grande parte dos problemas em Anéis de Grupo centraliza-se em torno do estudo do seu grupo de unidades. Torna-se importante então conhecermos a estrutura do grupo de unidades de um anel de grupo U(ZG). No entanto, salvo raras exceções, pouco se conhece acerca da estrutura de U(ZG). Uma das idéias para se conhecer um pouco mais sobre a estrutura do grupo de unidades seria estudarmos a sua série central superior. No caso em que o grupo G é finito, um resultado de Gruenberg pode ser usado para mostrar que a série central superior de U = U(ZG) estaciona. Este fato nos possibilita estudarmos o hipercentro de U(ZG). A fim de obter mais informações sobre as unidades hipercentrais de U(ZG), nós necessitamos de uma descrição dos subgrupos de torção do hipercentro de U(ZG), o qual obtemos através dos resultados de Bovdi sobre os subgrupos normais periódicos de U(ZG). De modo geral, utilizando os resultados de Bovdi obtemos uma classificação dos grupos periódicos G em função do subgrupo dos elementos % de torção do hipercentro de U(ZG). Neste momento, surgem algumas perguntas, as quais procuraremos expor neste trabalho. Entre elas: O limitante superior para a série central superior de U(ZG) depende do grupo G? Como determinar a altura central superior de U(ZG)? Neste momento é interessante salientarmos como a Conjectura do Normalizador nos possibilita obtermos uma estimativa para a altura central de U(ZG). Todas estas perguntas são respondidas no capítulo 4, como resultado dos trabalhos de Arora, Hales, Passi que nos garantem que neste caso a altura central de U(ZG) é no máximo 2. Embora a demonstração original deste fato, devido a Arora, Hales e Passi, não tenha utilizado a Conjectura do Normalizador, tomamos neste trabalho a idéia de supormos um provável caminho que levasse a este resultado obtendo estimativas para a altura central de U(ZG) utilizando a Conjectura do Normalizador e um teorema de Gross. Nosso intuito com isso foi o de conectarmos a resolução do problema em questão com um problema de pesquisa intensa atual na área, ou seja, a Conjectura do Normalizador. Nesse caso, surge mais uma pergunta: Quais os grupos G tais que U(ZG) admite altura central exatamente 0, 1 ou 2? Pergunta que é respondida por Arora, Hales e Passi também. Finalmente, mais um resultado de Arora, Hales e Passi nos mostram uma caracterização do hipercentro de U(ZG) que surpreendentemente bate com a estimativa dada pela Conjectura do Normalizador. É interessante notar aqui o aparecimento da Conjectura do Normalizador tanto para obtermos uma estimativa da altura central de U(ZG) como na caracterização do hipercentro de U(ZG). No capítulo 5 apresentamos a generalização dos resultados de Arora, Hales e Passi para o caso em que o grupo G é periódico, cujos resultados se devem basicamente a Y.Li. No caso em que o grupo G é periódico, Li mostrou que a altura central de U(ZG) é no máximo 2. E introduzindo o conceito de n-centro de um grupo, obtém-se uma caracterização do n-centro de U(ZG) em função dos resultados sobre o hipercentro do grupo de unidades.
id USP_55f7d276eda7cbf27c0432e3f8f174fa
oai_identifier_str oai:teses.usp.br:tde-20052007-112821
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Unidades Hipercentrais em Anéis de Grupo.Hypercentral units in group ringsanel de grupogroup ringHipercentrohypercentrenormalizadornormalizerunidadeunitGrande parte dos problemas em Anéis de Grupo centraliza-se em torno do estudo do seu grupo de unidades. Torna-se importante então conhecermos a estrutura do grupo de unidades de um anel de grupo U(ZG). No entanto, salvo raras exceções, pouco se conhece acerca da estrutura de U(ZG). Uma das idéias para se conhecer um pouco mais sobre a estrutura do grupo de unidades seria estudarmos a sua série central superior. No caso em que o grupo G é finito, um resultado de Gruenberg pode ser usado para mostrar que a série central superior de U = U(ZG) estaciona. Este fato nos possibilita estudarmos o hipercentro de U(ZG). A fim de obter mais informações sobre as unidades hipercentrais de U(ZG), nós necessitamos de uma descrição dos subgrupos de torção do hipercentro de U(ZG), o qual obtemos através dos resultados de Bovdi sobre os subgrupos normais periódicos de U(ZG). De modo geral, utilizando os resultados de Bovdi obtemos uma classificação dos grupos periódicos G em função do subgrupo dos elementos % de torção do hipercentro de U(ZG). Neste momento, surgem algumas perguntas, as quais procuraremos expor neste trabalho. Entre elas: O limitante superior para a série central superior de U(ZG) depende do grupo G? Como determinar a altura central superior de U(ZG)? Neste momento é interessante salientarmos como a Conjectura do Normalizador nos possibilita obtermos uma estimativa para a altura central de U(ZG). Todas estas perguntas são respondidas no capítulo 4, como resultado dos trabalhos de Arora, Hales, Passi que nos garantem que neste caso a altura central de U(ZG) é no máximo 2. Embora a demonstração original deste fato, devido a Arora, Hales e Passi, não tenha utilizado a Conjectura do Normalizador, tomamos neste trabalho a idéia de supormos um provável caminho que levasse a este resultado obtendo estimativas para a altura central de U(ZG) utilizando a Conjectura do Normalizador e um teorema de Gross. Nosso intuito com isso foi o de conectarmos a resolução do problema em questão com um problema de pesquisa intensa atual na área, ou seja, a Conjectura do Normalizador. Nesse caso, surge mais uma pergunta: Quais os grupos G tais que U(ZG) admite altura central exatamente 0, 1 ou 2? Pergunta que é respondida por Arora, Hales e Passi também. Finalmente, mais um resultado de Arora, Hales e Passi nos mostram uma caracterização do hipercentro de U(ZG) que surpreendentemente bate com a estimativa dada pela Conjectura do Normalizador. É interessante notar aqui o aparecimento da Conjectura do Normalizador tanto para obtermos uma estimativa da altura central de U(ZG) como na caracterização do hipercentro de U(ZG). No capítulo 5 apresentamos a generalização dos resultados de Arora, Hales e Passi para o caso em que o grupo G é periódico, cujos resultados se devem basicamente a Y.Li. No caso em que o grupo G é periódico, Li mostrou que a altura central de U(ZG) é no máximo 2. E introduzindo o conceito de n-centro de um grupo, obtém-se uma caracterização do n-centro de U(ZG) em função dos resultados sobre o hipercentro do grupo de unidades.A great deal of problems in Group Rings centralize around the study of its group of units. Hence it becomes important to know the structure of the group of units U(ZG). But with a few exceptions, we do not have much information about its structure. Trying to obtain more information about the structure of U(ZG), we could, for example, study the upper central series of U(ZG). In case G is finite, a result of Gruenberg implies that U(ZG) has finite central height. This fact allow us to study the hypercenter of U(ZG). In order to obtain more information about the hypercentral units of U(ZG) we need a description of the torsion subgroup of the hypercenter of U(ZG) which is provided by results of Bovdi on periodic normal subgroups of U(ZG). Gruenberg\'s result suscites some questions which we will try to answer in this work. Among them: The upper bound for the upper central serie of U(ZG) depends on of the group G? How could we determine the central height of U(ZG)? It is interesting to see how we could obtain an estimative for the central height of U(ZG) using the Normalizer Conjecture. All these questions are answered in chapter 4, as a consequence of Arora, Hales and Passi\'s work which guarantees us that in this case the central height of U(ZG) is at most 2. Nevertheless this result of Arora, Hales and Passi doesn\'t use the Normalizer Conjecture, we suppose here that the Normalizer Conjecture holds and used a result of Gross to obtain estimatives to the central height of U(ZG). Our aim was to connect the question discussed ahead with a intensive research problem, the Normalizer Conjecture. This arises the following question: For which groups does U(ZG) have central height exactly 0, 1 or 2? This question is also answered by Arora, Hales and Passi. Finally, another result of Arora, Hales and Passi present us a characterization of the hypercenter of U(ZG), which surprisingly satisfies the condition presented in the Normalizer Conjecture. It is interesting to observe here the appearing of Normalizer Conjecture to obtain an estimative for the central height of U(ZG) and to obtain a characterization of the hypercenter of U(ZG). In chapter 5 we present a result of Li which generalizes the result of Arora, Hales and Passi to the case when G is a periodic group. He proves that the central height of U(ZG) is also at most 2. Introducing the concept of n-center he was able to use the results about the hypercenter of U(ZG) to obtain a characterization of the n-center of U(ZG).Biblioteca Digitais de Teses e Dissertações da USPJuriaans, Orlando StanleyIwaki, Edson Ryoji Okamoto2000-06-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052007-112821/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:51Zoai:teses.usp.br:tde-20052007-112821Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Unidades Hipercentrais em Anéis de Grupo.
Hypercentral units in group rings
title Unidades Hipercentrais em Anéis de Grupo.
spellingShingle Unidades Hipercentrais em Anéis de Grupo.
Iwaki, Edson Ryoji Okamoto
anel de grupo
group ring
Hipercentro
hypercentre
normalizador
normalizer
unidade
unit
title_short Unidades Hipercentrais em Anéis de Grupo.
title_full Unidades Hipercentrais em Anéis de Grupo.
title_fullStr Unidades Hipercentrais em Anéis de Grupo.
title_full_unstemmed Unidades Hipercentrais em Anéis de Grupo.
title_sort Unidades Hipercentrais em Anéis de Grupo.
author Iwaki, Edson Ryoji Okamoto
author_facet Iwaki, Edson Ryoji Okamoto
author_role author
dc.contributor.none.fl_str_mv Juriaans, Orlando Stanley
dc.contributor.author.fl_str_mv Iwaki, Edson Ryoji Okamoto
dc.subject.por.fl_str_mv anel de grupo
group ring
Hipercentro
hypercentre
normalizador
normalizer
unidade
unit
topic anel de grupo
group ring
Hipercentro
hypercentre
normalizador
normalizer
unidade
unit
description Grande parte dos problemas em Anéis de Grupo centraliza-se em torno do estudo do seu grupo de unidades. Torna-se importante então conhecermos a estrutura do grupo de unidades de um anel de grupo U(ZG). No entanto, salvo raras exceções, pouco se conhece acerca da estrutura de U(ZG). Uma das idéias para se conhecer um pouco mais sobre a estrutura do grupo de unidades seria estudarmos a sua série central superior. No caso em que o grupo G é finito, um resultado de Gruenberg pode ser usado para mostrar que a série central superior de U = U(ZG) estaciona. Este fato nos possibilita estudarmos o hipercentro de U(ZG). A fim de obter mais informações sobre as unidades hipercentrais de U(ZG), nós necessitamos de uma descrição dos subgrupos de torção do hipercentro de U(ZG), o qual obtemos através dos resultados de Bovdi sobre os subgrupos normais periódicos de U(ZG). De modo geral, utilizando os resultados de Bovdi obtemos uma classificação dos grupos periódicos G em função do subgrupo dos elementos % de torção do hipercentro de U(ZG). Neste momento, surgem algumas perguntas, as quais procuraremos expor neste trabalho. Entre elas: O limitante superior para a série central superior de U(ZG) depende do grupo G? Como determinar a altura central superior de U(ZG)? Neste momento é interessante salientarmos como a Conjectura do Normalizador nos possibilita obtermos uma estimativa para a altura central de U(ZG). Todas estas perguntas são respondidas no capítulo 4, como resultado dos trabalhos de Arora, Hales, Passi que nos garantem que neste caso a altura central de U(ZG) é no máximo 2. Embora a demonstração original deste fato, devido a Arora, Hales e Passi, não tenha utilizado a Conjectura do Normalizador, tomamos neste trabalho a idéia de supormos um provável caminho que levasse a este resultado obtendo estimativas para a altura central de U(ZG) utilizando a Conjectura do Normalizador e um teorema de Gross. Nosso intuito com isso foi o de conectarmos a resolução do problema em questão com um problema de pesquisa intensa atual na área, ou seja, a Conjectura do Normalizador. Nesse caso, surge mais uma pergunta: Quais os grupos G tais que U(ZG) admite altura central exatamente 0, 1 ou 2? Pergunta que é respondida por Arora, Hales e Passi também. Finalmente, mais um resultado de Arora, Hales e Passi nos mostram uma caracterização do hipercentro de U(ZG) que surpreendentemente bate com a estimativa dada pela Conjectura do Normalizador. É interessante notar aqui o aparecimento da Conjectura do Normalizador tanto para obtermos uma estimativa da altura central de U(ZG) como na caracterização do hipercentro de U(ZG). No capítulo 5 apresentamos a generalização dos resultados de Arora, Hales e Passi para o caso em que o grupo G é periódico, cujos resultados se devem basicamente a Y.Li. No caso em que o grupo G é periódico, Li mostrou que a altura central de U(ZG) é no máximo 2. E introduzindo o conceito de n-centro de um grupo, obtém-se uma caracterização do n-centro de U(ZG) em função dos resultados sobre o hipercentro do grupo de unidades.
publishDate 2000
dc.date.none.fl_str_mv 2000-06-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052007-112821/
url http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052007-112821/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257153981644800