Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19

Detalhes bibliográficos
Autor(a) principal: Melo, Mauro André Damasceno de
Data de Publicação: 2023
Outros Autores: Rocha, Carlos Alberto Machado da
Tipo de documento: Artigo
Idioma: por
Título da fonte: Cadernos de Prospecção (Online)
Texto Completo: https://periodicos.ufba.br/index.php/nit/article/view/50158
Resumo: In a post-pandemic world where the transmission chains of the SARS-CoV-2 virus will still be present, there is a clear necessity to understand machine learning algorithms in artificial intelligence systems with the aim of testing the repurposing drugs against COVID-19. To prospect the scientific-technological production on the subject, a search for the term repurposing AND drugs AND machine learning AND COVID was carried out in the Web of Science, Orbit and Lens databases (2017 to 2022). We identified 71 bibliographic records with authors structured in two groups, with the 2nd group answering by the most recent documents. Nine classes of IPCs were identified with the main technological domains related to the topic and all distributed in 42 active patent documents. Of these, 4 were granted to “RO5” and “Precisionlife” companies. Of the 50 most promising startups in 2022, only two develop this type of technology, which reinforces the existence of a small number of players in this sector and highlights the promising horizon for this area of ​​technology production.
id UFBA-6_c5636ca052b78c184ec3f3b8e7848333
oai_identifier_str oai:ojs.periodicos.ufba.br:article/50158
network_acronym_str UFBA-6
network_name_str Cadernos de Prospecção (Online)
repository_id_str
spelling Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19 Prospecção Tecnológica sobre o Setor de Plataformas de Inteligência Artificial Aplicadas ao Reposicionamento de Drogas Contra a COVID-19PandemiaInteligência ArtificialFármacos.PandemicArtificial IntelligenceDrugs.In a post-pandemic world where the transmission chains of the SARS-CoV-2 virus will still be present, there is a clear necessity to understand machine learning algorithms in artificial intelligence systems with the aim of testing the repurposing drugs against COVID-19. To prospect the scientific-technological production on the subject, a search for the term repurposing AND drugs AND machine learning AND COVID was carried out in the Web of Science, Orbit and Lens databases (2017 to 2022). We identified 71 bibliographic records with authors structured in two groups, with the 2nd group answering by the most recent documents. Nine classes of IPCs were identified with the main technological domains related to the topic and all distributed in 42 active patent documents. Of these, 4 were granted to “RO5” and “Precisionlife” companies. Of the 50 most promising startups in 2022, only two develop this type of technology, which reinforces the existence of a small number of players in this sector and highlights the promising horizon for this area of ​​technology production.Em um mundo pós-pandemia, em que as cadeias de transmissão do vírus SARS-CoV-2 ainda se farão presentes, é clara a necessidade do domínio dos algoritmos de aprendizado de máquina em sistemas de inteligência artificial com o objetivo de testar a reutilização de drogas já existentes contra a COVID-19. Para prospectar a produção científico-tecnológica sobre o tema, foi realizada uma busca do termo repurposing AND drugs AND machine learning AND COVID nas bases Web of Science, Orbit e Lens (2017 a 2022). Foram identificados 71 registros bibliográficos com autores estruturados em dois grupos, sendo o segundo detentor dos documentos mais recentes. Foram identificadas nove classes de IPCs com os principais domínios tecnológicos relacionados ao tema e todos distribuídos em 42 documentos ativos de patentes. Destes, quatro se encontravam concedidos às empresas “RO5” e “Precisionlife”. Das 50 startups mais promissoras de 2022, apenas duas desenvolvem esse tipo de tecnologia, o que reforça o entendimento sobre o número ainda pequeno de players no setor e evidencia o horizonte promissor para essa área de produção de tecnologia.Universidade Federal da Bahia2023-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufba.br/index.php/nit/article/view/5015810.9771/cp.v16i2.50158Cadernos de Prospecção; Vol. 16 No. 2 (2023): Edição Especial Covid 19 - O Mundo Pós Pandemia; 405-420Cadernos de Prospecção; v. 16 n. 2 (2023): Edição Especial Covid 19 - O Mundo Pós Pandemia; 405-4202317-00261983-1358reponame:Cadernos de Prospecção (Online)instname:Universidade Federal da Bahia (UFBA)instacron:UFBAporhttps://periodicos.ufba.br/index.php/nit/article/view/50158/28542Copyright (c) 2022 Cadernos de Prospecçãohttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessMelo, Mauro André Damasceno deRocha, Carlos Alberto Machado da2023-03-15T23:03:43Zoai:ojs.periodicos.ufba.br:article/50158Revistahttps://periodicos.ufba.br/index.php/nitPUBhttps://periodicos.ufba.br/index.php/nit/oaicadernosdeprospeccao@gmail.com || maliceribeiro@yahoo.com.br || cadernosdeprospeccao@gmail.com || saionaraluna@gmail.com2317-00261983-1358opendoar:2023-03-15T23:03:43Cadernos de Prospecção (Online) - Universidade Federal da Bahia (UFBA)false
dc.title.none.fl_str_mv Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19
Prospecção Tecnológica sobre o Setor de Plataformas de Inteligência Artificial Aplicadas ao Reposicionamento de Drogas Contra a COVID-19
title Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19
spellingShingle Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19
Melo, Mauro André Damasceno de
Pandemia
Inteligência Artificial
Fármacos.
Pandemic
Artificial Intelligence
Drugs.
title_short Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19
title_full Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19
title_fullStr Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19
title_full_unstemmed Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19
title_sort Technological Prospection on Artificial Intelligence Sector Applied to Repurposing Drugs Against COVID-19
author Melo, Mauro André Damasceno de
author_facet Melo, Mauro André Damasceno de
Rocha, Carlos Alberto Machado da
author_role author
author2 Rocha, Carlos Alberto Machado da
author2_role author
dc.contributor.author.fl_str_mv Melo, Mauro André Damasceno de
Rocha, Carlos Alberto Machado da
dc.subject.por.fl_str_mv Pandemia
Inteligência Artificial
Fármacos.
Pandemic
Artificial Intelligence
Drugs.
topic Pandemia
Inteligência Artificial
Fármacos.
Pandemic
Artificial Intelligence
Drugs.
description In a post-pandemic world where the transmission chains of the SARS-CoV-2 virus will still be present, there is a clear necessity to understand machine learning algorithms in artificial intelligence systems with the aim of testing the repurposing drugs against COVID-19. To prospect the scientific-technological production on the subject, a search for the term repurposing AND drugs AND machine learning AND COVID was carried out in the Web of Science, Orbit and Lens databases (2017 to 2022). We identified 71 bibliographic records with authors structured in two groups, with the 2nd group answering by the most recent documents. Nine classes of IPCs were identified with the main technological domains related to the topic and all distributed in 42 active patent documents. Of these, 4 were granted to “RO5” and “Precisionlife” companies. Of the 50 most promising startups in 2022, only two develop this type of technology, which reinforces the existence of a small number of players in this sector and highlights the promising horizon for this area of ​​technology production.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufba.br/index.php/nit/article/view/50158
10.9771/cp.v16i2.50158
url https://periodicos.ufba.br/index.php/nit/article/view/50158
identifier_str_mv 10.9771/cp.v16i2.50158
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufba.br/index.php/nit/article/view/50158/28542
dc.rights.driver.fl_str_mv Copyright (c) 2022 Cadernos de Prospecção
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Cadernos de Prospecção
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal da Bahia
publisher.none.fl_str_mv Universidade Federal da Bahia
dc.source.none.fl_str_mv Cadernos de Prospecção; Vol. 16 No. 2 (2023): Edição Especial Covid 19 - O Mundo Pós Pandemia; 405-420
Cadernos de Prospecção; v. 16 n. 2 (2023): Edição Especial Covid 19 - O Mundo Pós Pandemia; 405-420
2317-0026
1983-1358
reponame:Cadernos de Prospecção (Online)
instname:Universidade Federal da Bahia (UFBA)
instacron:UFBA
instname_str Universidade Federal da Bahia (UFBA)
instacron_str UFBA
institution UFBA
reponame_str Cadernos de Prospecção (Online)
collection Cadernos de Prospecção (Online)
repository.name.fl_str_mv Cadernos de Prospecção (Online) - Universidade Federal da Bahia (UFBA)
repository.mail.fl_str_mv cadernosdeprospeccao@gmail.com || maliceribeiro@yahoo.com.br || cadernosdeprospeccao@gmail.com || saionaraluna@gmail.com
_version_ 1799319848734425088