Prospective Study on Artificial Intelligence Applied to the Civil Construction Sector
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Cadernos de Prospecção (Online) |
Texto Completo: | https://periodicos.ufba.br/index.php/nit/article/view/32975 |
Resumo: | Artificial intelligence is a technology that allows machines to learn from experiences, adjusting to each new piece of information, performing tasks like humans, enabling construction companies to potentially improve their activities. However, the sector is one of the least digital in the world, implementing innovations at a slower pace. Thus, this article aimed to carry out a prospective study of artificial intelligence solutions with potential for use in the sector, for which the patents filed with INPI and Lens were raised, as well as the scientific productions registered on the CAPES and Science Direct platforms. The prospect pointed to a lack of research and development of products related to the theme. However, the United States stands out in the diffusion of these technologies. Brazil, on the other hand, presented an incipient scenario in its development, although there are already government initiatives to remedy them. |
id |
UFBA-6_ce8f2a8a32bfd4e4e5fa6e3dc2a97c54 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.ufba.br:article/32975 |
network_acronym_str |
UFBA-6 |
network_name_str |
Cadernos de Prospecção (Online) |
repository_id_str |
|
spelling |
Prospective Study on Artificial Intelligence Applied to the Civil Construction SectorEstudo Prospectivo Sobre Inteligência Artificial Aplicado ao Setor da Construção CivilProspecçãoInteligência ArtificialConstrução Civil.ProspectingArtificial IntelligenceBuilding Construction.Artificial intelligence is a technology that allows machines to learn from experiences, adjusting to each new piece of information, performing tasks like humans, enabling construction companies to potentially improve their activities. However, the sector is one of the least digital in the world, implementing innovations at a slower pace. Thus, this article aimed to carry out a prospective study of artificial intelligence solutions with potential for use in the sector, for which the patents filed with INPI and Lens were raised, as well as the scientific productions registered on the CAPES and Science Direct platforms. The prospect pointed to a lack of research and development of products related to the theme. However, the United States stands out in the diffusion of these technologies. Brazil, on the other hand, presented an incipient scenario in its development, although there are already government initiatives to remedy them.A inteligência artificial é uma tecnologia que permite que máquinas aprendam com experiências, ajustando-se a cada nova informação, realizando tarefas como humanos, possibilitando às empresas de construção civil um suporte potencial para melhorar suas atividades. Contudo, o setor é um dos menos digitais do mundo, implementando inovações em ritmo mais lento. Dessa forma, o presente artigo teve como objetivo realizar um estudo prospectivo de soluções de inteligência artificial com potencial de utilização no setor, sendo para isso levantadas as patentes depositadas no INPI e no Lens, assim como as produções científicas registradas nas plataformas CAPES e Science Direct. A prospecção apontou uma carência em pesquisa e desenvolvimento de produtos relacionados ao tema. Contudo, os Estados Unidos destacam-se na difusão dessas tecnologias. Já o Brasil, apresentou um cenário incipiente em seu desenvolvimento, embora já existam iniciativas do poder público para saná-las.Universidade Federal da Bahia2020-07-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionProspecção; Revisão de Literaturaapplication/pdfhttps://periodicos.ufba.br/index.php/nit/article/view/3297510.9771/cp.v13i4.32975Cadernos de Prospecção; Vol. 13 No. 4 (2020); 1134Cadernos de Prospecção; v. 13 n. 4 (2020); 11342317-00261983-1358reponame:Cadernos de Prospecção (Online)instname:Universidade Federal da Bahia (UFBA)instacron:UFBAporhttps://periodicos.ufba.br/index.php/nit/article/view/32975/21562Copyright (c) 2020 Cadernos de Prospecçãohttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessTeixeira, Fabio dos SantosTeixeira, Paulo dos SantosRocha, Carlos Alberto Machado da2020-07-12T18:33:55Zoai:ojs.periodicos.ufba.br:article/32975Revistahttps://periodicos.ufba.br/index.php/nitPUBhttps://periodicos.ufba.br/index.php/nit/oaicadernosdeprospeccao@gmail.com || maliceribeiro@yahoo.com.br || cadernosdeprospeccao@gmail.com || saionaraluna@gmail.com2317-00261983-1358opendoar:2020-07-12T18:33:55Cadernos de Prospecção (Online) - Universidade Federal da Bahia (UFBA)false |
dc.title.none.fl_str_mv |
Prospective Study on Artificial Intelligence Applied to the Civil Construction Sector Estudo Prospectivo Sobre Inteligência Artificial Aplicado ao Setor da Construção Civil |
title |
Prospective Study on Artificial Intelligence Applied to the Civil Construction Sector |
spellingShingle |
Prospective Study on Artificial Intelligence Applied to the Civil Construction Sector Teixeira, Fabio dos Santos Prospecção Inteligência Artificial Construção Civil. Prospecting Artificial Intelligence Building Construction. |
title_short |
Prospective Study on Artificial Intelligence Applied to the Civil Construction Sector |
title_full |
Prospective Study on Artificial Intelligence Applied to the Civil Construction Sector |
title_fullStr |
Prospective Study on Artificial Intelligence Applied to the Civil Construction Sector |
title_full_unstemmed |
Prospective Study on Artificial Intelligence Applied to the Civil Construction Sector |
title_sort |
Prospective Study on Artificial Intelligence Applied to the Civil Construction Sector |
author |
Teixeira, Fabio dos Santos |
author_facet |
Teixeira, Fabio dos Santos Teixeira, Paulo dos Santos Rocha, Carlos Alberto Machado da |
author_role |
author |
author2 |
Teixeira, Paulo dos Santos Rocha, Carlos Alberto Machado da |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Teixeira, Fabio dos Santos Teixeira, Paulo dos Santos Rocha, Carlos Alberto Machado da |
dc.subject.por.fl_str_mv |
Prospecção Inteligência Artificial Construção Civil. Prospecting Artificial Intelligence Building Construction. |
topic |
Prospecção Inteligência Artificial Construção Civil. Prospecting Artificial Intelligence Building Construction. |
description |
Artificial intelligence is a technology that allows machines to learn from experiences, adjusting to each new piece of information, performing tasks like humans, enabling construction companies to potentially improve their activities. However, the sector is one of the least digital in the world, implementing innovations at a slower pace. Thus, this article aimed to carry out a prospective study of artificial intelligence solutions with potential for use in the sector, for which the patents filed with INPI and Lens were raised, as well as the scientific productions registered on the CAPES and Science Direct platforms. The prospect pointed to a lack of research and development of products related to the theme. However, the United States stands out in the diffusion of these technologies. Brazil, on the other hand, presented an incipient scenario in its development, although there are already government initiatives to remedy them. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-12 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Prospecção; Revisão de Literatura |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufba.br/index.php/nit/article/view/32975 10.9771/cp.v13i4.32975 |
url |
https://periodicos.ufba.br/index.php/nit/article/view/32975 |
identifier_str_mv |
10.9771/cp.v13i4.32975 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufba.br/index.php/nit/article/view/32975/21562 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Cadernos de Prospecção https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Cadernos de Prospecção https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal da Bahia |
publisher.none.fl_str_mv |
Universidade Federal da Bahia |
dc.source.none.fl_str_mv |
Cadernos de Prospecção; Vol. 13 No. 4 (2020); 1134 Cadernos de Prospecção; v. 13 n. 4 (2020); 1134 2317-0026 1983-1358 reponame:Cadernos de Prospecção (Online) instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
instname_str |
Universidade Federal da Bahia (UFBA) |
instacron_str |
UFBA |
institution |
UFBA |
reponame_str |
Cadernos de Prospecção (Online) |
collection |
Cadernos de Prospecção (Online) |
repository.name.fl_str_mv |
Cadernos de Prospecção (Online) - Universidade Federal da Bahia (UFBA) |
repository.mail.fl_str_mv |
cadernosdeprospeccao@gmail.com || maliceribeiro@yahoo.com.br || cadernosdeprospeccao@gmail.com || saionaraluna@gmail.com |
_version_ |
1799319847356596224 |