Fallibilism and mathematics in Charles S. Peirce
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Argumentos : Revista de Filosofia (Online) |
Texto Completo: | http://periodicos.ufc.br/argumentos/article/view/18924 |
Resumo: | The Charles Sanders Peirce’s doctrine of fallibilism states that by means of reasoning, we can never achieve certainty, accuracy and universality absolutes. If is haven’t any conclusive inferences from likely, would infallibility when it comes to mathematical propositions of type 2 +2 = 4? Scholars of the American philosopher are not unanimous about this issue. This article discusses the hypothesis that there is a logic certainty inherent of the mathematical judgments, which, however, does not conform to an epistemological certainty. What is the fallibility asserts is the impossibility of an axiomatic when dealing with questions about fact, but the math does not say anything of real unless about hypothetical things. But it is fallible in its experimental character that Peirce explained in the division between corollarial and theorematic deductions. |
id |
UFC-17_1b577b3a4af0009373e13894cf071da8 |
---|---|
oai_identifier_str |
oai:periodicos.ufc:article/18924 |
network_acronym_str |
UFC-17 |
network_name_str |
Argumentos : Revista de Filosofia (Online) |
repository_id_str |
|
spelling |
Fallibilism and mathematics in Charles S. PeirceFalibilismo e matemática em Charles S. PeirceFallibilism. Mathematic. Epistemology. Logic.Falibilismo. Matemática. Epistemologia. Lógica.The Charles Sanders Peirce’s doctrine of fallibilism states that by means of reasoning, we can never achieve certainty, accuracy and universality absolutes. If is haven’t any conclusive inferences from likely, would infallibility when it comes to mathematical propositions of type 2 +2 = 4? Scholars of the American philosopher are not unanimous about this issue. This article discusses the hypothesis that there is a logic certainty inherent of the mathematical judgments, which, however, does not conform to an epistemological certainty. What is the fallibility asserts is the impossibility of an axiomatic when dealing with questions about fact, but the math does not say anything of real unless about hypothetical things. But it is fallible in its experimental character that Peirce explained in the division between corollarial and theorematic deductions.A doutrina falibilista de Charles Sanders Peirce (1839-1914) afirma que, por meio do raciocínio, não podemos nunca obter certeza, exatidão e universalidade absolutas. Não havendo de modo algum um saber conclusivo a partir de inferências prováveis, haveria infalibilidade em se tratando de proposições matemáticas do tipo 2+2=4? Os comentadores do filósofo norte-americano não são unânimes a este respeito. O presente artigo discute a hipótese de que há uma certeza lógica inerente ao juízo matemático, o que, no entanto, não se conforma a uma certeza epistemológica. O que o falibilismo assevera é a impossibilidade de uma axiomática em se tratando de questões de fato, mas a matemática não afirma nada de verdadeiro a não ser a respeito de coisas hipotéticas. Porém, é falível em seu caráter experimental, explicitado na divisão que Peirce faz entre dedução corolarial e teoremática.Universidade Federal do Ceará2009-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttp://periodicos.ufc.br/argumentos/article/view/18924Argumentos - Revista de Filosofia; No 2Argumentos - Periódico de Filosofia; Núm. 2Argumentos - Revista de Filosofia; n. 21984-42551984-4247reponame:Argumentos : Revista de Filosofia (Online)instname:Universidade Federal do Ceará (UFC)instacron:UFCporhttp://periodicos.ufc.br/argumentos/article/view/18924/29645Copyright (c) 2017 Argumentosinfo:eu-repo/semantics/openAccessSalatiel, José Renato2021-07-24T13:52:12Zoai:periodicos.ufc:article/18924Revistahttp://www.filosofia.ufc.br/argumentosPUBhttp://periodicos.ufc.br/argumentos/oaiargumentos@ufc.br||1984-42551984-4247opendoar:2021-07-24T13:52:12Argumentos : Revista de Filosofia (Online) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Fallibilism and mathematics in Charles S. Peirce Falibilismo e matemática em Charles S. Peirce |
title |
Fallibilism and mathematics in Charles S. Peirce |
spellingShingle |
Fallibilism and mathematics in Charles S. Peirce Salatiel, José Renato Fallibilism. Mathematic. Epistemology. Logic. Falibilismo. Matemática. Epistemologia. Lógica. |
title_short |
Fallibilism and mathematics in Charles S. Peirce |
title_full |
Fallibilism and mathematics in Charles S. Peirce |
title_fullStr |
Fallibilism and mathematics in Charles S. Peirce |
title_full_unstemmed |
Fallibilism and mathematics in Charles S. Peirce |
title_sort |
Fallibilism and mathematics in Charles S. Peirce |
author |
Salatiel, José Renato |
author_facet |
Salatiel, José Renato |
author_role |
author |
dc.contributor.author.fl_str_mv |
Salatiel, José Renato |
dc.subject.por.fl_str_mv |
Fallibilism. Mathematic. Epistemology. Logic. Falibilismo. Matemática. Epistemologia. Lógica. |
topic |
Fallibilism. Mathematic. Epistemology. Logic. Falibilismo. Matemática. Epistemologia. Lógica. |
description |
The Charles Sanders Peirce’s doctrine of fallibilism states that by means of reasoning, we can never achieve certainty, accuracy and universality absolutes. If is haven’t any conclusive inferences from likely, would infallibility when it comes to mathematical propositions of type 2 +2 = 4? Scholars of the American philosopher are not unanimous about this issue. This article discusses the hypothesis that there is a logic certainty inherent of the mathematical judgments, which, however, does not conform to an epistemological certainty. What is the fallibility asserts is the impossibility of an axiomatic when dealing with questions about fact, but the math does not say anything of real unless about hypothetical things. But it is fallible in its experimental character that Peirce explained in the division between corollarial and theorematic deductions. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-07-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://periodicos.ufc.br/argumentos/article/view/18924 |
url |
http://periodicos.ufc.br/argumentos/article/view/18924 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://periodicos.ufc.br/argumentos/article/view/18924/29645 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2017 Argumentos info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2017 Argumentos |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Ceará |
publisher.none.fl_str_mv |
Universidade Federal do Ceará |
dc.source.none.fl_str_mv |
Argumentos - Revista de Filosofia; No 2 Argumentos - Periódico de Filosofia; Núm. 2 Argumentos - Revista de Filosofia; n. 2 1984-4255 1984-4247 reponame:Argumentos : Revista de Filosofia (Online) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Argumentos : Revista de Filosofia (Online) |
collection |
Argumentos : Revista de Filosofia (Online) |
repository.name.fl_str_mv |
Argumentos : Revista de Filosofia (Online) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
argumentos@ufc.br|| |
_version_ |
1797068844953501696 |