Fallibilism and mathematics in Charles S. Peirce

Detalhes bibliográficos
Autor(a) principal: Salatiel, José Renato
Data de Publicação: 2009
Tipo de documento: Artigo
Idioma: por
Título da fonte: Argumentos : Revista de Filosofia (Online)
Texto Completo: http://periodicos.ufc.br/argumentos/article/view/18924
Resumo: The Charles Sanders Peirce’s doctrine of fallibilism states that by means of reasoning, we can never achieve certainty, accuracy and universality absolutes. If is haven’t any conclusive inferences from likely, would infallibility when it comes to mathematical propositions of type 2 +2 = 4? Scholars of the American philosopher are not unanimous about this issue. This article discusses the hypothesis that there is a logic certainty inherent of the mathematical judgments, which, however, does not conform to an epistemological certainty. What is the fallibility asserts is the impossibility of an axiomatic when dealing with questions about fact, but the math does not say anything of real unless about hypothetical things. But it is fallible in its experimental character that Peirce explained in the division between corollarial and theorematic deductions.
id UFC-17_1b577b3a4af0009373e13894cf071da8
oai_identifier_str oai:periodicos.ufc:article/18924
network_acronym_str UFC-17
network_name_str Argumentos : Revista de Filosofia (Online)
repository_id_str
spelling Fallibilism and mathematics in Charles S. PeirceFalibilismo e matemática em Charles S. PeirceFallibilism. Mathematic. Epistemology. Logic.Falibilismo. Matemática. Epistemologia. Lógica.The Charles Sanders Peirce’s doctrine of fallibilism states that by means of reasoning, we can never achieve certainty, accuracy and universality absolutes. If is haven’t any conclusive inferences from likely, would infallibility when it comes to mathematical propositions of type 2 +2 = 4? Scholars of the American philosopher are not unanimous about this issue. This article discusses the hypothesis that there is a logic certainty inherent of the mathematical judgments, which, however, does not conform to an epistemological certainty. What is the fallibility asserts is the impossibility of an axiomatic when dealing with questions about fact, but the math does not say anything of real unless about hypothetical things. But it is fallible in its experimental character that Peirce explained in the division between corollarial and theorematic deductions.A doutrina falibilista de Charles Sanders Peirce (1839-1914) afirma que, por meio do raciocínio, não podemos nunca obter certeza, exatidão e universalidade absolutas. Não havendo de modo algum um saber conclusivo a partir de inferências prováveis, haveria infalibilidade em se tratando de proposições matemáticas do tipo 2+2=4? Os comentadores do filósofo norte-americano não são unânimes a este respeito. O presente artigo discute a hipótese de que há uma certeza lógica inerente ao juízo matemático, o que, no entanto, não se conforma a uma certeza epistemológica. O que o falibilismo assevera é a impossibilidade de uma axiomática em se tratando de questões de fato, mas a matemática não afirma nada de verdadeiro a não ser a respeito de coisas hipotéticas. Porém, é falível em seu caráter experimental, explicitado na divisão que Peirce faz entre dedução corolarial e teoremática.Universidade Federal do Ceará2009-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttp://periodicos.ufc.br/argumentos/article/view/18924Argumentos - Revista de Filosofia; No 2Argumentos - Periódico de Filosofia; Núm. 2Argumentos - Revista de Filosofia; n. 21984-42551984-4247reponame:Argumentos : Revista de Filosofia (Online)instname:Universidade Federal do Ceará (UFC)instacron:UFCporhttp://periodicos.ufc.br/argumentos/article/view/18924/29645Copyright (c) 2017 Argumentosinfo:eu-repo/semantics/openAccessSalatiel, José Renato2021-07-24T13:52:12Zoai:periodicos.ufc:article/18924Revistahttp://www.filosofia.ufc.br/argumentosPUBhttp://periodicos.ufc.br/argumentos/oaiargumentos@ufc.br||1984-42551984-4247opendoar:2021-07-24T13:52:12Argumentos : Revista de Filosofia (Online) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Fallibilism and mathematics in Charles S. Peirce
Falibilismo e matemática em Charles S. Peirce
title Fallibilism and mathematics in Charles S. Peirce
spellingShingle Fallibilism and mathematics in Charles S. Peirce
Salatiel, José Renato
Fallibilism. Mathematic. Epistemology. Logic.
Falibilismo. Matemática. Epistemologia. Lógica.
title_short Fallibilism and mathematics in Charles S. Peirce
title_full Fallibilism and mathematics in Charles S. Peirce
title_fullStr Fallibilism and mathematics in Charles S. Peirce
title_full_unstemmed Fallibilism and mathematics in Charles S. Peirce
title_sort Fallibilism and mathematics in Charles S. Peirce
author Salatiel, José Renato
author_facet Salatiel, José Renato
author_role author
dc.contributor.author.fl_str_mv Salatiel, José Renato
dc.subject.por.fl_str_mv Fallibilism. Mathematic. Epistemology. Logic.
Falibilismo. Matemática. Epistemologia. Lógica.
topic Fallibilism. Mathematic. Epistemology. Logic.
Falibilismo. Matemática. Epistemologia. Lógica.
description The Charles Sanders Peirce’s doctrine of fallibilism states that by means of reasoning, we can never achieve certainty, accuracy and universality absolutes. If is haven’t any conclusive inferences from likely, would infallibility when it comes to mathematical propositions of type 2 +2 = 4? Scholars of the American philosopher are not unanimous about this issue. This article discusses the hypothesis that there is a logic certainty inherent of the mathematical judgments, which, however, does not conform to an epistemological certainty. What is the fallibility asserts is the impossibility of an axiomatic when dealing with questions about fact, but the math does not say anything of real unless about hypothetical things. But it is fallible in its experimental character that Peirce explained in the division between corollarial and theorematic deductions.
publishDate 2009
dc.date.none.fl_str_mv 2009-07-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://periodicos.ufc.br/argumentos/article/view/18924
url http://periodicos.ufc.br/argumentos/article/view/18924
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://periodicos.ufc.br/argumentos/article/view/18924/29645
dc.rights.driver.fl_str_mv Copyright (c) 2017 Argumentos
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Argumentos
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Ceará
publisher.none.fl_str_mv Universidade Federal do Ceará
dc.source.none.fl_str_mv Argumentos - Revista de Filosofia; No 2
Argumentos - Periódico de Filosofia; Núm. 2
Argumentos - Revista de Filosofia; n. 2
1984-4255
1984-4247
reponame:Argumentos : Revista de Filosofia (Online)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Argumentos : Revista de Filosofia (Online)
collection Argumentos : Revista de Filosofia (Online)
repository.name.fl_str_mv Argumentos : Revista de Filosofia (Online) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv argumentos@ufc.br||
_version_ 1797068844953501696