A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate Composites
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://dx.doi.org/10.1016/j.compstruct.2013.07.049 http://www.repositorio.ufc.br/handle/riufc/62166 |
Resumo: | This work presents a genetic algorithm combining two types of computational parallelization methods,resulting in a hybrid shared/distributed memory algorithm based on the island model using both Open-MP and MPI libraries. In order to take further advantage of the island configuration, different geneticparameters are used in each one, allowing the consideration of multiple evolution environments concur-rently. To specifically treat composite structures, a three-chromosome variable encoding and special lam-inate operators are used. The resulting gains in execution time due to the parallel implementation allowthe use of high fidelity analysis procedures based on the Finite Element Method in the optimization ofcomposite laminate plates and shells. Two numerical examples are presented in order to assess the per-formance and reliability of the proposed algorithm. |
id |
UFC-7_021c6eb4886c34b684c827ce7c67b771 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/62166 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate CompositesComposite materialsGenetic algorithmParallel computingFEMThis work presents a genetic algorithm combining two types of computational parallelization methods,resulting in a hybrid shared/distributed memory algorithm based on the island model using both Open-MP and MPI libraries. In order to take further advantage of the island configuration, different geneticparameters are used in each one, allowing the consideration of multiple evolution environments concur-rently. To specifically treat composite structures, a three-chromosome variable encoding and special lam-inate operators are used. The resulting gains in execution time due to the parallel implementation allowthe use of high fidelity analysis procedures based on the Finite Element Method in the optimization ofcomposite laminate plates and shells. Two numerical examples are presented in order to assess the per-formance and reliability of the proposed algorithm.Elsevier Ltd.2021-11-18T11:39:46Z2021-11-18T11:39:46Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfROCHA, Iuri Barcelos Carneiro Montenegro da; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. A hybrid shared/distributed memory parallel genetic algorithm for optimization of laminate composites. Composite Structures, v. 107, p. 288-297, jan. 2014.0263-8223http://dx.doi.org/10.1016/j.compstruct.2013.07.049http://www.repositorio.ufc.br/handle/riufc/62166Rocha, Iuri Barcelos Carneiro Montenegro daParente Junior, EvandroMelo, Antônio Macário Cartaxo deinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC2023-12-06T14:08:02Zoai:repositorio.ufc.br:riufc/62166Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:31:38.748483Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate Composites |
title |
A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate Composites |
spellingShingle |
A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate Composites Rocha, Iuri Barcelos Carneiro Montenegro da Composite materials Genetic algorithm Parallel computing FEM |
title_short |
A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate Composites |
title_full |
A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate Composites |
title_fullStr |
A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate Composites |
title_full_unstemmed |
A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate Composites |
title_sort |
A Hybrid Shared/Distributed Memory Parallel Genetic Algorithm for Optimization of Laminate Composites |
author |
Rocha, Iuri Barcelos Carneiro Montenegro da |
author_facet |
Rocha, Iuri Barcelos Carneiro Montenegro da Parente Junior, Evandro Melo, Antônio Macário Cartaxo de |
author_role |
author |
author2 |
Parente Junior, Evandro Melo, Antônio Macário Cartaxo de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Rocha, Iuri Barcelos Carneiro Montenegro da Parente Junior, Evandro Melo, Antônio Macário Cartaxo de |
dc.subject.por.fl_str_mv |
Composite materials Genetic algorithm Parallel computing FEM |
topic |
Composite materials Genetic algorithm Parallel computing FEM |
description |
This work presents a genetic algorithm combining two types of computational parallelization methods,resulting in a hybrid shared/distributed memory algorithm based on the island model using both Open-MP and MPI libraries. In order to take further advantage of the island configuration, different geneticparameters are used in each one, allowing the consideration of multiple evolution environments concur-rently. To specifically treat composite structures, a three-chromosome variable encoding and special lam-inate operators are used. The resulting gains in execution time due to the parallel implementation allowthe use of high fidelity analysis procedures based on the Finite Element Method in the optimization ofcomposite laminate plates and shells. Two numerical examples are presented in order to assess the per-formance and reliability of the proposed algorithm. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2021-11-18T11:39:46Z 2021-11-18T11:39:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ROCHA, Iuri Barcelos Carneiro Montenegro da; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. A hybrid shared/distributed memory parallel genetic algorithm for optimization of laminate composites. Composite Structures, v. 107, p. 288-297, jan. 2014. 0263-8223 http://dx.doi.org/10.1016/j.compstruct.2013.07.049 http://www.repositorio.ufc.br/handle/riufc/62166 |
identifier_str_mv |
ROCHA, Iuri Barcelos Carneiro Montenegro da; PARENTE JUNIOR, Evandro; MELO, Antônio Macário Cartaxo de. A hybrid shared/distributed memory parallel genetic algorithm for optimization of laminate composites. Composite Structures, v. 107, p. 288-297, jan. 2014. 0263-8223 |
url |
http://dx.doi.org/10.1016/j.compstruct.2013.07.049 http://www.repositorio.ufc.br/handle/riufc/62166 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd. |
publisher.none.fl_str_mv |
Elsevier Ltd. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028841120071680 |