Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/39400 |
Resumo: | The hardware of mobile devices has evolved, and a few device models can even reach the performance of virtual machine instances. Nevertheless, despite technological advances in the capacity of smartphones and wireless technologies, most devices are still computationally limited compared to a desktop computer or a notebook, and they face many challenges to execute applications that require heavy computation. The mobile cloud computing (MCC) paradigm studies how to extend computational resources and the energy of mobile devices through the use of offloading techniques. In this context, this thesis investigates some of the challenges identified in the mobile cloud computing area. Among these challenges, we can mention: the decision of when and where to perform offloading, the decision of which metrics must be monitored by the offloading system, and also the support for user’s mobility in a hybrid environment composed of cloudlets and public cloud instances. Given these challenges, this thesis focuses on the development of a framework that allows mobile applications to dynamically perform offloading of methods in a hybrid environment. The developed framework leverages machine learning and software-defined networking techniques to improve offloading decisions, to perform adaptive monitoring, and to support users’ mobility. Several experiments were conducted to evaluate the proposed solution, and results show that our offloading decision approach is a lightweight process and the proposed adaptive monitoring service can be used to reduce the energy consumption of mobile devices. Moreover, the results show that the proposed solution supports the most variate mobility scenarios and performs offloading to different remote servers transparently to the user. |
id |
UFC-7_067322a524f84305721997767251b364 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/39400 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systemsMobile cloud computingTomada de decisão de offloadingMobilidadeMonitoramento adaptativoThe hardware of mobile devices has evolved, and a few device models can even reach the performance of virtual machine instances. Nevertheless, despite technological advances in the capacity of smartphones and wireless technologies, most devices are still computationally limited compared to a desktop computer or a notebook, and they face many challenges to execute applications that require heavy computation. The mobile cloud computing (MCC) paradigm studies how to extend computational resources and the energy of mobile devices through the use of offloading techniques. In this context, this thesis investigates some of the challenges identified in the mobile cloud computing area. Among these challenges, we can mention: the decision of when and where to perform offloading, the decision of which metrics must be monitored by the offloading system, and also the support for user’s mobility in a hybrid environment composed of cloudlets and public cloud instances. Given these challenges, this thesis focuses on the development of a framework that allows mobile applications to dynamically perform offloading of methods in a hybrid environment. The developed framework leverages machine learning and software-defined networking techniques to improve offloading decisions, to perform adaptive monitoring, and to support users’ mobility. Several experiments were conducted to evaluate the proposed solution, and results show that our offloading decision approach is a lightweight process and the proposed adaptive monitoring service can be used to reduce the energy consumption of mobile devices. Moreover, the results show that the proposed solution supports the most variate mobility scenarios and performs offloading to different remote servers transparently to the user.O hardware de dispositivos móveis tem evoluído nos últimos anos, ao ponto de alguns aparelhos conseguirem alcançar o mesmo desempenho de instâncias de máquinas virtuais. No entanto, apesar dos avanços tecnológicos na capacidade dos smartphones e redes sem fio, a maioria dos dispositivos ainda são computacionalmente limitados se comparados com um computador desktop ou um notebook, e eles enfrentam muitos desafios, principalmente para executar aplicações que requerem computação intensiva. O paradigma mobile cloud computing (MCC) estuda formas de estender os recursos computacionais e energéticos dos dispositivos móveis, através da utilização de técnicas de offloading. Nesse contexto, esta tese investiga alguns dos desafios identificados na área de MCC, tais como: a decisão de quando e onde fazer offloading, a decisão de quais métricas devem ser monitoradas pelo sistema de offloading, e o suporte à mobilidade dos usuários em ambientes híbridos, compostos por cloudlets e instâncias de nuvens públicas. Diante de tais desafios, esta tese foca no desenvolvimento de um framework que permita que aplicações móveis façam offloading dinâmico de métodos em um ambiente com múltiplos cloudlets e nuvem pública. O framework desenvolvido utiliza técnicas de aprendizagem de máquina e redes definidas por software para melhorar a decisão de offloading, realizar monitoramento adaptativo e suportar a mobilidade dos usuários. Diversos experimentos foram realizados para avaliar a solução proposta e os resultados mostram que a abordagem desenvolvida para a tomada de decisão é leve e que o serviço de monitoramento adaptativo proposto pode ser utilizado para reduzir o consumo de energia de dispositivos móveis. Além disso, os resultados mostram que a solução proposta pode lidar com diferentes cenários de mobilidade e pode realizar offloading em diferentes servidores remotos de forma transparente para o usuário.Souza, José Neuman deTrinta, Fernando Antonio MotaRego, Paulo Antonio Leal2019-02-05T19:15:07Z2019-02-05T19:15:07Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfREGO, Paulo Antonio Leal. Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems. 2016. 115 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/39400porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-02-28T18:36:44Zoai:repositorio.ufc.br:riufc/39400Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T19:03:50.575819Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems |
title |
Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems |
spellingShingle |
Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems Rego, Paulo Antonio Leal Mobile cloud computing Tomada de decisão de offloading Mobilidade Monitoramento adaptativo |
title_short |
Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems |
title_full |
Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems |
title_fullStr |
Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems |
title_full_unstemmed |
Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems |
title_sort |
Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems |
author |
Rego, Paulo Antonio Leal |
author_facet |
Rego, Paulo Antonio Leal |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souza, José Neuman de Trinta, Fernando Antonio Mota |
dc.contributor.author.fl_str_mv |
Rego, Paulo Antonio Leal |
dc.subject.por.fl_str_mv |
Mobile cloud computing Tomada de decisão de offloading Mobilidade Monitoramento adaptativo |
topic |
Mobile cloud computing Tomada de decisão de offloading Mobilidade Monitoramento adaptativo |
description |
The hardware of mobile devices has evolved, and a few device models can even reach the performance of virtual machine instances. Nevertheless, despite technological advances in the capacity of smartphones and wireless technologies, most devices are still computationally limited compared to a desktop computer or a notebook, and they face many challenges to execute applications that require heavy computation. The mobile cloud computing (MCC) paradigm studies how to extend computational resources and the energy of mobile devices through the use of offloading techniques. In this context, this thesis investigates some of the challenges identified in the mobile cloud computing area. Among these challenges, we can mention: the decision of when and where to perform offloading, the decision of which metrics must be monitored by the offloading system, and also the support for user’s mobility in a hybrid environment composed of cloudlets and public cloud instances. Given these challenges, this thesis focuses on the development of a framework that allows mobile applications to dynamically perform offloading of methods in a hybrid environment. The developed framework leverages machine learning and software-defined networking techniques to improve offloading decisions, to perform adaptive monitoring, and to support users’ mobility. Several experiments were conducted to evaluate the proposed solution, and results show that our offloading decision approach is a lightweight process and the proposed adaptive monitoring service can be used to reduce the energy consumption of mobile devices. Moreover, the results show that the proposed solution supports the most variate mobility scenarios and performs offloading to different remote servers transparently to the user. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2019-02-05T19:15:07Z 2019-02-05T19:15:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
REGO, Paulo Antonio Leal. Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems. 2016. 115 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2016. http://www.repositorio.ufc.br/handle/riufc/39400 |
identifier_str_mv |
REGO, Paulo Antonio Leal. Applying smart decisions, adaptive monitoring and mobility support for enhancing offloading systems. 2016. 115 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2016. |
url |
http://www.repositorio.ufc.br/handle/riufc/39400 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813029051810447360 |