Operational Bayesian GLS regression for regional hydrologic analyses

Detalhes bibliográficos
Autor(a) principal: Reis Júnior, Dirceu S.
Data de Publicação: 2020
Outros Autores: Veilleux, Andrea G., Lamontagn, Jonathan R., Stedinger, Jery R., Martins, Eduardo Sávio Passos Rodrigues
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/59253
Resumo: This paper develops the quasi analytic Bayesian analysis of the generalized least squares (GLS)(BGLS) model introduced by Reis et al. (2005, https://doi.org/10.1029/2004WR003445) into an operationaland statistically comprehensive GLS regional hydrologic regression methodology to estimate oodquantiles, regional shape parameters, low ows, and other statistics with spatially correlated ow records.New GLS regression diagnostic statistics include a Bayesian plausibility value, pseudo adjusted R2,pseudo analysis of variance table, and two diagnostic error variance ratios. Traditional leverage andinuence are extended to identify rogue observations, address lack of t, and support gauge network designand regionofinuence regression. Formulas are derived for the Bayesian computation of estimators,standard errors, and diagnostic statistics. The use of BGLS and the new diagnostic statistics are illustratedwith a regional logspace skew regression analysis for the Piedmont region in the Southeastern U.S. Acomparison of ordinary, weighted, and GLS analyses documents the advantages of the Bayesian estimatorover the method ofmoment estimator of model error variance introduced by Stedinger and Tasker (1985,https://doi.org/10.1029/WR021i009p01421). Of the three types of analyses, only GLS considers thecovariance among concurrent ows. The example demonstrates that GLS regional skewness models can behighly accurate when correctly analyzed: The BGLS average variance of prediction is 0.090 for SouthCarolina (92 stations), whereas a traditional ordinary least squares analysis published by the U.S.Geological Survey yielded 0.193 (Feaster & Tasker, 2002, https://doi.org/10.3133/wri024140). BGLSprovides a statistical valid framework for the rigorous analysis of spatially correlated hydrologic data,allowing for the estimation of parameters and their actual precision and computation of several diagnosticstatistics, as well as correctly attributing variability to the three key sources: time sampling error, modelerror, and signal
id UFC-7_1763bfcb908bf36da5e52157a443255b
oai_identifier_str oai:repositorio.ufc.br:riufc/59253
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Operational Bayesian GLS regression for regional hydrologic analysesOperational Bayesian GLS regression for regional hydrologic analysesHidrologiaÁguaPesquisaThis paper develops the quasi analytic Bayesian analysis of the generalized least squares (GLS)(BGLS) model introduced by Reis et al. (2005, https://doi.org/10.1029/2004WR003445) into an operationaland statistically comprehensive GLS regional hydrologic regression methodology to estimate oodquantiles, regional shape parameters, low ows, and other statistics with spatially correlated ow records.New GLS regression diagnostic statistics include a Bayesian plausibility value, pseudo adjusted R2,pseudo analysis of variance table, and two diagnostic error variance ratios. Traditional leverage andinuence are extended to identify rogue observations, address lack of t, and support gauge network designand regionofinuence regression. Formulas are derived for the Bayesian computation of estimators,standard errors, and diagnostic statistics. The use of BGLS and the new diagnostic statistics are illustratedwith a regional logspace skew regression analysis for the Piedmont region in the Southeastern U.S. Acomparison of ordinary, weighted, and GLS analyses documents the advantages of the Bayesian estimatorover the method ofmoment estimator of model error variance introduced by Stedinger and Tasker (1985,https://doi.org/10.1029/WR021i009p01421). Of the three types of analyses, only GLS considers thecovariance among concurrent ows. The example demonstrates that GLS regional skewness models can behighly accurate when correctly analyzed: The BGLS average variance of prediction is 0.090 for SouthCarolina (92 stations), whereas a traditional ordinary least squares analysis published by the U.S.Geological Survey yielded 0.193 (Feaster & Tasker, 2002, https://doi.org/10.3133/wri024140). BGLSprovides a statistical valid framework for the rigorous analysis of spatially correlated hydrologic data,allowing for the estimation of parameters and their actual precision and computation of several diagnosticstatistics, as well as correctly attributing variability to the three key sources: time sampling error, modelerror, and signalWater Resources Research2021-06-29T12:33:21Z2021-06-29T12:33:21Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfREIS JÚNIOR, Direceu S.; VEILLEUX, Andrea G.; LAMONTAGNE, Jonathan R.; STEDINGER, Jery R.; MARTINS, Eduardo Sávio Passos Rodrigues. Operational Bayesian GLS regression for regional hydrologic analyses. Water Resources Research, United States, v. 56, p. 1-35, 2020.1944-7973http://www.repositorio.ufc.br/handle/riufc/59253Reis Júnior, Dirceu S.Veilleux, Andrea G.Lamontagn, Jonathan R.Stedinger, Jery R.Martins, Eduardo Sávio Passos Rodriguesengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-11-29T12:25:20Zoai:repositorio.ufc.br:riufc/59253Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:22:26.251965Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Operational Bayesian GLS regression for regional hydrologic analyses
Operational Bayesian GLS regression for regional hydrologic analyses
title Operational Bayesian GLS regression for regional hydrologic analyses
spellingShingle Operational Bayesian GLS regression for regional hydrologic analyses
Reis Júnior, Dirceu S.
Hidrologia
Água
Pesquisa
title_short Operational Bayesian GLS regression for regional hydrologic analyses
title_full Operational Bayesian GLS regression for regional hydrologic analyses
title_fullStr Operational Bayesian GLS regression for regional hydrologic analyses
title_full_unstemmed Operational Bayesian GLS regression for regional hydrologic analyses
title_sort Operational Bayesian GLS regression for regional hydrologic analyses
author Reis Júnior, Dirceu S.
author_facet Reis Júnior, Dirceu S.
Veilleux, Andrea G.
Lamontagn, Jonathan R.
Stedinger, Jery R.
Martins, Eduardo Sávio Passos Rodrigues
author_role author
author2 Veilleux, Andrea G.
Lamontagn, Jonathan R.
Stedinger, Jery R.
Martins, Eduardo Sávio Passos Rodrigues
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Reis Júnior, Dirceu S.
Veilleux, Andrea G.
Lamontagn, Jonathan R.
Stedinger, Jery R.
Martins, Eduardo Sávio Passos Rodrigues
dc.subject.por.fl_str_mv Hidrologia
Água
Pesquisa
topic Hidrologia
Água
Pesquisa
description This paper develops the quasi analytic Bayesian analysis of the generalized least squares (GLS)(BGLS) model introduced by Reis et al. (2005, https://doi.org/10.1029/2004WR003445) into an operationaland statistically comprehensive GLS regional hydrologic regression methodology to estimate oodquantiles, regional shape parameters, low ows, and other statistics with spatially correlated ow records.New GLS regression diagnostic statistics include a Bayesian plausibility value, pseudo adjusted R2,pseudo analysis of variance table, and two diagnostic error variance ratios. Traditional leverage andinuence are extended to identify rogue observations, address lack of t, and support gauge network designand regionofinuence regression. Formulas are derived for the Bayesian computation of estimators,standard errors, and diagnostic statistics. The use of BGLS and the new diagnostic statistics are illustratedwith a regional logspace skew regression analysis for the Piedmont region in the Southeastern U.S. Acomparison of ordinary, weighted, and GLS analyses documents the advantages of the Bayesian estimatorover the method ofmoment estimator of model error variance introduced by Stedinger and Tasker (1985,https://doi.org/10.1029/WR021i009p01421). Of the three types of analyses, only GLS considers thecovariance among concurrent ows. The example demonstrates that GLS regional skewness models can behighly accurate when correctly analyzed: The BGLS average variance of prediction is 0.090 for SouthCarolina (92 stations), whereas a traditional ordinary least squares analysis published by the U.S.Geological Survey yielded 0.193 (Feaster & Tasker, 2002, https://doi.org/10.3133/wri024140). BGLSprovides a statistical valid framework for the rigorous analysis of spatially correlated hydrologic data,allowing for the estimation of parameters and their actual precision and computation of several diagnosticstatistics, as well as correctly attributing variability to the three key sources: time sampling error, modelerror, and signal
publishDate 2020
dc.date.none.fl_str_mv 2020
2021-06-29T12:33:21Z
2021-06-29T12:33:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv REIS JÚNIOR, Direceu S.; VEILLEUX, Andrea G.; LAMONTAGNE, Jonathan R.; STEDINGER, Jery R.; MARTINS, Eduardo Sávio Passos Rodrigues. Operational Bayesian GLS regression for regional hydrologic analyses. Water Resources Research, United States, v. 56, p. 1-35, 2020.
1944-7973
http://www.repositorio.ufc.br/handle/riufc/59253
identifier_str_mv REIS JÚNIOR, Direceu S.; VEILLEUX, Andrea G.; LAMONTAGNE, Jonathan R.; STEDINGER, Jery R.; MARTINS, Eduardo Sávio Passos Rodrigues. Operational Bayesian GLS regression for regional hydrologic analyses. Water Resources Research, United States, v. 56, p. 1-35, 2020.
1944-7973
url http://www.repositorio.ufc.br/handle/riufc/59253
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Water Resources Research
publisher.none.fl_str_mv Water Resources Research
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028776745893888