Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/59394 |
Resumo: | This paper develops a Bayesian approach to analysis of a generalized least squares(GLS) regression model for regional analyses of hydrologic data. The new approachallows computation of the posterior distributions of the parameters and the model errorvariance using a quasi-analytic approach. Two regional skew estimation studies illustratethe value of the Bayesian GLS approach for regional statistical analysis of a shapeparameter and demonstrate that regional skew models can be relatively precise witheffective record lengths in excess of 60 years. With Bayesian GLS the marginal posteriordistribution of the model error variance and the corresponding mean and variance of theparameters can be computed directly, thereby providing a simple but important extension ofthe regional GLS regression procedures popularized by Tasker and Stedinger (1989), whichis sensitive to the likely values of the model error variance when it is small relative to thesampling error in the at-site estimator. |
id |
UFC-7_8dcb6a1814b0e8c7e65c526c7c9c2987 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/59394 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimationBayesian generalized least squares regression with application to log Pearson type 3 regional skew estimationHidrologiaAnálise estatisticoThis paper develops a Bayesian approach to analysis of a generalized least squares(GLS) regression model for regional analyses of hydrologic data. The new approachallows computation of the posterior distributions of the parameters and the model errorvariance using a quasi-analytic approach. Two regional skew estimation studies illustratethe value of the Bayesian GLS approach for regional statistical analysis of a shapeparameter and demonstrate that regional skew models can be relatively precise witheffective record lengths in excess of 60 years. With Bayesian GLS the marginal posteriordistribution of the model error variance and the corresponding mean and variance of theparameters can be computed directly, thereby providing a simple but important extension ofthe regional GLS regression procedures popularized by Tasker and Stedinger (1989), whichis sensitive to the likely values of the model error variance when it is small relative to thesampling error in the at-site estimator.Water Resources Research2021-07-08T15:19:45Z2021-07-08T15:19:45Z2005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfREIS JÚNIOR, Dirceu Silveira ; STEDINGER, Jery Russell ; MARTINS, Eduardo Savio Passos Rodrigues. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resources Research, United States, v. 41, 2005.1944-7973http://www.repositorio.ufc.br/handle/riufc/59394Reis Júnior, Dirceu SilveiraStedinger, Jery RussellMartins, Eduardo Sávio Passos Rodriguesporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-01-17T12:42:08Zoai:repositorio.ufc.br:riufc/59394Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:53:00.199635Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation |
title |
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation |
spellingShingle |
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation Reis Júnior, Dirceu Silveira Hidrologia Análise estatistico |
title_short |
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation |
title_full |
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation |
title_fullStr |
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation |
title_full_unstemmed |
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation |
title_sort |
Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation |
author |
Reis Júnior, Dirceu Silveira |
author_facet |
Reis Júnior, Dirceu Silveira Stedinger, Jery Russell Martins, Eduardo Sávio Passos Rodrigues |
author_role |
author |
author2 |
Stedinger, Jery Russell Martins, Eduardo Sávio Passos Rodrigues |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Reis Júnior, Dirceu Silveira Stedinger, Jery Russell Martins, Eduardo Sávio Passos Rodrigues |
dc.subject.por.fl_str_mv |
Hidrologia Análise estatistico |
topic |
Hidrologia Análise estatistico |
description |
This paper develops a Bayesian approach to analysis of a generalized least squares(GLS) regression model for regional analyses of hydrologic data. The new approachallows computation of the posterior distributions of the parameters and the model errorvariance using a quasi-analytic approach. Two regional skew estimation studies illustratethe value of the Bayesian GLS approach for regional statistical analysis of a shapeparameter and demonstrate that regional skew models can be relatively precise witheffective record lengths in excess of 60 years. With Bayesian GLS the marginal posteriordistribution of the model error variance and the corresponding mean and variance of theparameters can be computed directly, thereby providing a simple but important extension ofthe regional GLS regression procedures popularized by Tasker and Stedinger (1989), whichis sensitive to the likely values of the model error variance when it is small relative to thesampling error in the at-site estimator. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 2021-07-08T15:19:45Z 2021-07-08T15:19:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
REIS JÚNIOR, Dirceu Silveira ; STEDINGER, Jery Russell ; MARTINS, Eduardo Savio Passos Rodrigues. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resources Research, United States, v. 41, 2005. 1944-7973 http://www.repositorio.ufc.br/handle/riufc/59394 |
identifier_str_mv |
REIS JÚNIOR, Dirceu Silveira ; STEDINGER, Jery Russell ; MARTINS, Eduardo Savio Passos Rodrigues. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resources Research, United States, v. 41, 2005. 1944-7973 |
url |
http://www.repositorio.ufc.br/handle/riufc/59394 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Water Resources Research |
publisher.none.fl_str_mv |
Water Resources Research |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028983098310656 |