Algebraic Characterization of the Cost Function for Discrete Transversal Filters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/60059 |
Resumo: | This article deals with the algebraic structure of the real case cost function, present in the analysis of Wiener filters. The correlation written as a decomposable tensor comes from the isomorphism of the multiplication of inner products and linear operators, and for general bases does not have the same representation in terms of the components. This difference is the object of this study. |
id |
UFC-7_1878002fe0a82978f2dbbbb8b94f521a |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/60059 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Algebraic Characterization of the Cost Function for Discrete Transversal FiltersAlgebraic Characterization of the Cost Function for Discrete Transversal FiltersCost FunctionCorrelationBilinear TransformTensor ProductThis article deals with the algebraic structure of the real case cost function, present in the analysis of Wiener filters. The correlation written as a decomposable tensor comes from the isomorphism of the multiplication of inner products and linear operators, and for general bases does not have the same representation in terms of the components. This difference is the object of this study.This article deals with the algebraic structure of the real case cost function, present in the analysis of Wiener filters. The correlation written as a decomposable tensor comes from the isomorphism of the multiplication of inner products and linear operators, and for general bases does not have the same representation in terms of the components. This difference is the object of this study.https://www.sbrt.org.br/sbrt20182021-08-20T12:17:43Z2021-08-20T12:17:43Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfBLUHM, Rafael de Carvalho; CAVALCANTE, Charles Casimiro. Algebraic characterization of the cost function for discrete transversal filters. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS – SbrT, XXXVI., 16 a 19 set. 2018. Campina Grande-PB. Anais[…], Campina Grande-PB, 2018.p.598-599.http://www.repositorio.ufc.br/handle/riufc/60059Bluhm, Rafael de CarvalhoCavalcante, Charles Casimiroporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2021-08-20T12:17:44Zoai:repositorio.ufc.br:riufc/60059Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:17:50.122563Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Algebraic Characterization of the Cost Function for Discrete Transversal Filters Algebraic Characterization of the Cost Function for Discrete Transversal Filters |
title |
Algebraic Characterization of the Cost Function for Discrete Transversal Filters |
spellingShingle |
Algebraic Characterization of the Cost Function for Discrete Transversal Filters Bluhm, Rafael de Carvalho Cost Function Correlation Bilinear Transform Tensor Product |
title_short |
Algebraic Characterization of the Cost Function for Discrete Transversal Filters |
title_full |
Algebraic Characterization of the Cost Function for Discrete Transversal Filters |
title_fullStr |
Algebraic Characterization of the Cost Function for Discrete Transversal Filters |
title_full_unstemmed |
Algebraic Characterization of the Cost Function for Discrete Transversal Filters |
title_sort |
Algebraic Characterization of the Cost Function for Discrete Transversal Filters |
author |
Bluhm, Rafael de Carvalho |
author_facet |
Bluhm, Rafael de Carvalho Cavalcante, Charles Casimiro |
author_role |
author |
author2 |
Cavalcante, Charles Casimiro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bluhm, Rafael de Carvalho Cavalcante, Charles Casimiro |
dc.subject.por.fl_str_mv |
Cost Function Correlation Bilinear Transform Tensor Product |
topic |
Cost Function Correlation Bilinear Transform Tensor Product |
description |
This article deals with the algebraic structure of the real case cost function, present in the analysis of Wiener filters. The correlation written as a decomposable tensor comes from the isomorphism of the multiplication of inner products and linear operators, and for general bases does not have the same representation in terms of the components. This difference is the object of this study. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2021-08-20T12:17:43Z 2021-08-20T12:17:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BLUHM, Rafael de Carvalho; CAVALCANTE, Charles Casimiro. Algebraic characterization of the cost function for discrete transversal filters. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS – SbrT, XXXVI., 16 a 19 set. 2018. Campina Grande-PB. Anais[…], Campina Grande-PB, 2018.p.598-599. http://www.repositorio.ufc.br/handle/riufc/60059 |
identifier_str_mv |
BLUHM, Rafael de Carvalho; CAVALCANTE, Charles Casimiro. Algebraic characterization of the cost function for discrete transversal filters. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS – SbrT, XXXVI., 16 a 19 set. 2018. Campina Grande-PB. Anais[…], Campina Grande-PB, 2018.p.598-599. |
url |
http://www.repositorio.ufc.br/handle/riufc/60059 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
https://www.sbrt.org.br/sbrt2018 |
publisher.none.fl_str_mv |
https://www.sbrt.org.br/sbrt2018 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028743376011264 |