Differential operators penalized by geometric potentials.

Detalhes bibliográficos
Autor(a) principal: Souza, Leo Ivo da Silva
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/44489
Resumo: This paper is presented in two parts. In the first part, we establish the non-positivity of the second eigenvalue of the Schrödinger operator −div P r ∇ · − W 2r on a closed hypersurface Σ n of Rn+1 , where W r is a power of the (r + 1)-th mean curvature of Σ n which we will ask to be positive. If this eigenvalue is null, we will have a characterization of the sphere. This theorem generalizes the result of Harrell and Loss proved to the Laplace-Beltrame operator penalized by the square of the mean curvature. In the second part, we established the non-positivity of the second auto-value of the Schödinger operator − d2ds2 − (√F) −2CF(κ), in a closed curve of the plane with length 2π, F ∈ C 1 ( R ) and κ is the curvature of the curve. If this eigenvalue is null, we will have a characterization of the circle, which generalizes partially the result of Harrell and Loss proved to the one-dimensional Laplace operator penalized by the square of the curvature in curves of the plane.
id UFC-7_1a226d94a538373d547b9a6a4c3515ce
oai_identifier_str oai:repositorio.ufc.br:riufc/44489
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Differential operators penalized by geometric potentials.Differential operators penalized by geometric potentials.Operador de SchrodingerAutovaloresCurvatura médiaSchrödinger operatorEigenvaluesMean curvatureThis paper is presented in two parts. In the first part, we establish the non-positivity of the second eigenvalue of the Schrödinger operator −div P r ∇ · − W 2r on a closed hypersurface Σ n of Rn+1 , where W r is a power of the (r + 1)-th mean curvature of Σ n which we will ask to be positive. If this eigenvalue is null, we will have a characterization of the sphere. This theorem generalizes the result of Harrell and Loss proved to the Laplace-Beltrame operator penalized by the square of the mean curvature. In the second part, we established the non-positivity of the second auto-value of the Schödinger operator − d2ds2 − (√F) −2CF(κ), in a closed curve of the plane with length 2π, F ∈ C 1 ( R ) and κ is the curvature of the curve. If this eigenvalue is null, we will have a characterization of the circle, which generalizes partially the result of Harrell and Loss proved to the one-dimensional Laplace operator penalized by the square of the curvature in curves of the plane.Este trabalho é apresentado em duas partes. Na primeira parte, estabelecemos a não-positividade do segundo autovalor do operador de Schrödinger −div P r ∇ · − W 2r em uma hipersuperfície fechada Σ n de Rn+1 , onde W r é uma potência da (r + 1)-ésima curvatura média de Σ n que pediremos positiva. Se este eigenvalue é nulo, teremos uma caracterização da esfera. Este teorema generaliza o resultado de Harrell e Loss provado para o operador de Laplace-Beltrame penalizado pelo quadrado da curvatura média. Na segunda parte, nós estabelecemos a não-positividade do segundo auto-valor do operador de Schrödinger − d2ds2 − (√F)−2CF(κ), em uma curva fechada do plano com comprimento 2π, F ∈ C 1 ( R ) e κ é a curvatura da curva. Se este autovalor é nulo, teremos uma caracterização do círculo, que generaliza parcialmente o resultado de Harrell e Loss provado ao operador unidimensional de Laplace penalizado pelo quadrado da curvatura em curvas do plano.Montenegro, José Fábio BezerraSouza, Leo Ivo da Silva2019-08-06T18:12:31Z2019-08-06T18:12:31Z2018-08-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSOUZA, Leo Ivo da Silva. Differential operators penalized by geometric potentials. 2018. 20 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.http://www.repositorio.ufc.br/handle/riufc/44489engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-08-27T12:31:42Zoai:repositorio.ufc.br:riufc/44489Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:56:37.868198Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Differential operators penalized by geometric potentials.
Differential operators penalized by geometric potentials.
title Differential operators penalized by geometric potentials.
spellingShingle Differential operators penalized by geometric potentials.
Souza, Leo Ivo da Silva
Operador de Schrodinger
Autovalores
Curvatura média
Schrödinger operator
Eigenvalues
Mean curvature
title_short Differential operators penalized by geometric potentials.
title_full Differential operators penalized by geometric potentials.
title_fullStr Differential operators penalized by geometric potentials.
title_full_unstemmed Differential operators penalized by geometric potentials.
title_sort Differential operators penalized by geometric potentials.
author Souza, Leo Ivo da Silva
author_facet Souza, Leo Ivo da Silva
author_role author
dc.contributor.none.fl_str_mv Montenegro, José Fábio Bezerra
dc.contributor.author.fl_str_mv Souza, Leo Ivo da Silva
dc.subject.por.fl_str_mv Operador de Schrodinger
Autovalores
Curvatura média
Schrödinger operator
Eigenvalues
Mean curvature
topic Operador de Schrodinger
Autovalores
Curvatura média
Schrödinger operator
Eigenvalues
Mean curvature
description This paper is presented in two parts. In the first part, we establish the non-positivity of the second eigenvalue of the Schrödinger operator −div P r ∇ · − W 2r on a closed hypersurface Σ n of Rn+1 , where W r is a power of the (r + 1)-th mean curvature of Σ n which we will ask to be positive. If this eigenvalue is null, we will have a characterization of the sphere. This theorem generalizes the result of Harrell and Loss proved to the Laplace-Beltrame operator penalized by the square of the mean curvature. In the second part, we established the non-positivity of the second auto-value of the Schödinger operator − d2ds2 − (√F) −2CF(κ), in a closed curve of the plane with length 2π, F ∈ C 1 ( R ) and κ is the curvature of the curve. If this eigenvalue is null, we will have a characterization of the circle, which generalizes partially the result of Harrell and Loss proved to the one-dimensional Laplace operator penalized by the square of the curvature in curves of the plane.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-21
2019-08-06T18:12:31Z
2019-08-06T18:12:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SOUZA, Leo Ivo da Silva. Differential operators penalized by geometric potentials. 2018. 20 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.
http://www.repositorio.ufc.br/handle/riufc/44489
identifier_str_mv SOUZA, Leo Ivo da Silva. Differential operators penalized by geometric potentials. 2018. 20 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2018.
url http://www.repositorio.ufc.br/handle/riufc/44489
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813029006667153408