Fundamental tone estimates for elliptic operators in divergence form and geometric applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652006000300001 |
Resumo: | We establish a method for giving lower bounds for the fundamental tone of elliptic operators in divergence form in terms of the divergence of vector fields. We then apply this method to the Lr operator associated to immersed hypersurfaces with locally bounded (r + 1)-th mean curvature Hr + 1 of the space forms Nn+ 1(c) of constant sectional curvature c. As a corollary we give lower bounds for the extrinsic radius of closed hypersurfaces of Nn+ 1(c) with Hr + 1 > 0 in terms of the r-th and (r + 1)-th mean curvatures. Finally we observe that bounds for the Laplace eigenvalues essentially bound the eigenvalues of a self-adjoint elliptic differential operator in divergence form. This allows us to show that Cheeger's constant gives a lower bounds for the first nonzero Lr-eigenvalue of a closed hypersurface of Nn+ 1(c). |
id |
ABC-1_fbae7dc995dff579238e70ce0f01c0c8 |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652006000300001 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Fundamental tone estimates for elliptic operators in divergence form and geometric applicationsfundamental toneLr operatorr-th mean curvatureextrinsic radiusCheeger's constantWe establish a method for giving lower bounds for the fundamental tone of elliptic operators in divergence form in terms of the divergence of vector fields. We then apply this method to the Lr operator associated to immersed hypersurfaces with locally bounded (r + 1)-th mean curvature Hr + 1 of the space forms Nn+ 1(c) of constant sectional curvature c. As a corollary we give lower bounds for the extrinsic radius of closed hypersurfaces of Nn+ 1(c) with Hr + 1 > 0 in terms of the r-th and (r + 1)-th mean curvatures. Finally we observe that bounds for the Laplace eigenvalues essentially bound the eigenvalues of a self-adjoint elliptic differential operator in divergence form. This allows us to show that Cheeger's constant gives a lower bounds for the first nonzero Lr-eigenvalue of a closed hypersurface of Nn+ 1(c).Academia Brasileira de Ciências2006-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652006000300001Anais da Academia Brasileira de Ciências v.78 n.3 2006reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652006000300001info:eu-repo/semantics/openAccessBessa,Gregório P.Jorge,Luquésio P.Lima,Barnabé P.Montenegro,José F.eng2006-08-18T00:00:00Zoai:scielo:S0001-37652006000300001Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2006-08-18T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Fundamental tone estimates for elliptic operators in divergence form and geometric applications |
title |
Fundamental tone estimates for elliptic operators in divergence form and geometric applications |
spellingShingle |
Fundamental tone estimates for elliptic operators in divergence form and geometric applications Bessa,Gregório P. fundamental tone Lr operator r-th mean curvature extrinsic radius Cheeger's constant |
title_short |
Fundamental tone estimates for elliptic operators in divergence form and geometric applications |
title_full |
Fundamental tone estimates for elliptic operators in divergence form and geometric applications |
title_fullStr |
Fundamental tone estimates for elliptic operators in divergence form and geometric applications |
title_full_unstemmed |
Fundamental tone estimates for elliptic operators in divergence form and geometric applications |
title_sort |
Fundamental tone estimates for elliptic operators in divergence form and geometric applications |
author |
Bessa,Gregório P. |
author_facet |
Bessa,Gregório P. Jorge,Luquésio P. Lima,Barnabé P. Montenegro,José F. |
author_role |
author |
author2 |
Jorge,Luquésio P. Lima,Barnabé P. Montenegro,José F. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bessa,Gregório P. Jorge,Luquésio P. Lima,Barnabé P. Montenegro,José F. |
dc.subject.por.fl_str_mv |
fundamental tone Lr operator r-th mean curvature extrinsic radius Cheeger's constant |
topic |
fundamental tone Lr operator r-th mean curvature extrinsic radius Cheeger's constant |
description |
We establish a method for giving lower bounds for the fundamental tone of elliptic operators in divergence form in terms of the divergence of vector fields. We then apply this method to the Lr operator associated to immersed hypersurfaces with locally bounded (r + 1)-th mean curvature Hr + 1 of the space forms Nn+ 1(c) of constant sectional curvature c. As a corollary we give lower bounds for the extrinsic radius of closed hypersurfaces of Nn+ 1(c) with Hr + 1 > 0 in terms of the r-th and (r + 1)-th mean curvatures. Finally we observe that bounds for the Laplace eigenvalues essentially bound the eigenvalues of a self-adjoint elliptic differential operator in divergence form. This allows us to show that Cheeger's constant gives a lower bounds for the first nonzero Lr-eigenvalue of a closed hypersurface of Nn+ 1(c). |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652006000300001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652006000300001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0001-37652006000300001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.78 n.3 2006 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302856519745536 |