Fundamental tone estimates for elliptic operators in divergence form and geometric applications

Detalhes bibliográficos
Autor(a) principal: Bessa,Gregório P.
Data de Publicação: 2006
Outros Autores: Jorge,Luquésio P., Lima,Barnabé P., Montenegro,José F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652006000300001
Resumo: We establish a method for giving lower bounds for the fundamental tone of elliptic operators in divergence form in terms of the divergence of vector fields. We then apply this method to the Lr operator associated to immersed hypersurfaces with locally bounded (r + 1)-th mean curvature Hr + 1 of the space forms Nn+ 1(c) of constant sectional curvature c. As a corollary we give lower bounds for the extrinsic radius of closed hypersurfaces of Nn+ 1(c) with Hr + 1 > 0 in terms of the r-th and (r + 1)-th mean curvatures. Finally we observe that bounds for the Laplace eigenvalues essentially bound the eigenvalues of a self-adjoint elliptic differential operator in divergence form. This allows us to show that Cheeger's constant gives a lower bounds for the first nonzero Lr-eigenvalue of a closed hypersurface of Nn+ 1(c).
id ABC-1_fbae7dc995dff579238e70ce0f01c0c8
oai_identifier_str oai:scielo:S0001-37652006000300001
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Fundamental tone estimates for elliptic operators in divergence form and geometric applicationsfundamental toneLr operatorr-th mean curvatureextrinsic radiusCheeger's constantWe establish a method for giving lower bounds for the fundamental tone of elliptic operators in divergence form in terms of the divergence of vector fields. We then apply this method to the Lr operator associated to immersed hypersurfaces with locally bounded (r + 1)-th mean curvature Hr + 1 of the space forms Nn+ 1(c) of constant sectional curvature c. As a corollary we give lower bounds for the extrinsic radius of closed hypersurfaces of Nn+ 1(c) with Hr + 1 > 0 in terms of the r-th and (r + 1)-th mean curvatures. Finally we observe that bounds for the Laplace eigenvalues essentially bound the eigenvalues of a self-adjoint elliptic differential operator in divergence form. This allows us to show that Cheeger's constant gives a lower bounds for the first nonzero Lr-eigenvalue of a closed hypersurface of Nn+ 1(c).Academia Brasileira de Ciências2006-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652006000300001Anais da Academia Brasileira de Ciências v.78 n.3 2006reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652006000300001info:eu-repo/semantics/openAccessBessa,Gregório P.Jorge,Luquésio P.Lima,Barnabé P.Montenegro,José F.eng2006-08-18T00:00:00Zoai:scielo:S0001-37652006000300001Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2006-08-18T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Fundamental tone estimates for elliptic operators in divergence form and geometric applications
title Fundamental tone estimates for elliptic operators in divergence form and geometric applications
spellingShingle Fundamental tone estimates for elliptic operators in divergence form and geometric applications
Bessa,Gregório P.
fundamental tone
Lr operator
r-th mean curvature
extrinsic radius
Cheeger's constant
title_short Fundamental tone estimates for elliptic operators in divergence form and geometric applications
title_full Fundamental tone estimates for elliptic operators in divergence form and geometric applications
title_fullStr Fundamental tone estimates for elliptic operators in divergence form and geometric applications
title_full_unstemmed Fundamental tone estimates for elliptic operators in divergence form and geometric applications
title_sort Fundamental tone estimates for elliptic operators in divergence form and geometric applications
author Bessa,Gregório P.
author_facet Bessa,Gregório P.
Jorge,Luquésio P.
Lima,Barnabé P.
Montenegro,José F.
author_role author
author2 Jorge,Luquésio P.
Lima,Barnabé P.
Montenegro,José F.
author2_role author
author
author
dc.contributor.author.fl_str_mv Bessa,Gregório P.
Jorge,Luquésio P.
Lima,Barnabé P.
Montenegro,José F.
dc.subject.por.fl_str_mv fundamental tone
Lr operator
r-th mean curvature
extrinsic radius
Cheeger's constant
topic fundamental tone
Lr operator
r-th mean curvature
extrinsic radius
Cheeger's constant
description We establish a method for giving lower bounds for the fundamental tone of elliptic operators in divergence form in terms of the divergence of vector fields. We then apply this method to the Lr operator associated to immersed hypersurfaces with locally bounded (r + 1)-th mean curvature Hr + 1 of the space forms Nn+ 1(c) of constant sectional curvature c. As a corollary we give lower bounds for the extrinsic radius of closed hypersurfaces of Nn+ 1(c) with Hr + 1 > 0 in terms of the r-th and (r + 1)-th mean curvatures. Finally we observe that bounds for the Laplace eigenvalues essentially bound the eigenvalues of a self-adjoint elliptic differential operator in divergence form. This allows us to show that Cheeger's constant gives a lower bounds for the first nonzero Lr-eigenvalue of a closed hypersurface of Nn+ 1(c).
publishDate 2006
dc.date.none.fl_str_mv 2006-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652006000300001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652006000300001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0001-37652006000300001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.78 n.3 2006
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302856519745536