Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados

Detalhes bibliográficos
Autor(a) principal: Bomfim, Liezelotte Rezende
Data de Publicação: 2005
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/48245
Resumo: Title: Molecular Basis of The Glycoconjugate Specificity of Lectins From SubTribe Diocleinae. Background: Proteins exhibiting non-catalytic binding sites towards carbohydrates form a class of very heterogeneous molecules commonly designed lectins. These proteins have been used as study-model molecules to understand the molecular basis of protein-carbohydrate interactions. Seeds of the subtribe Diocleinae are a rich source of lectins whose primary specificity is addressed to glucose/mannose monosaccharides. However, despite this and many other structural features shared by Diocleinae lectins they display difterent recognition to glycoconjugates like N-acetyllactosamine and oligomannoside types. The present work aimed to determine the molecular basis of the oligosaccharide specificity of the Diocleinae lectins towards glycoproteins and purified glycopeptides on a comparative basis to other legume lectins. The experimental strategy included analysis of the kinetic interaction (and inhibition) of soluble lectins with immobilized glycoproteins based on Surface Plasmon Resonance (RPS-BiaCore Technology); Aftinity of immobilized lectins to soluble radio-Iabelled oligosaccharides and glycopeptides and autoradiography analysis of the fractionated structures upon lectin aftinity column. Material and Methods: The seed lectins from Canavalia brasiliensis, C. maritima, C. bonariensis, Cratylia floribunda, Dioclea grandiflora, D. virgata and D. violacea, D. guianensis were purified by aftinity chromatography as previously described in the literature. The purified lectins were assayed for kinetic interaction analysis with immobilized glycoproteins exhibiting distinct oligosaccharide structures of N-acetyllactosamine and oligomannoside types and inhibition of the interaction by monosaccharides. Further, the glycoconjugate specificity of the lectins was investigated by aftinity chromatography of radio-Iabeled glycopeptides and oligosaccharides of difterent origins and well-defined structures on lectin-Sepharose 4B columns. The ability of these lectins to fractionate complex mixtures of closely related oligomannoside structures was determined by autoradiography analysis of the chromatography fractions eluted from the lectin columns. Results: The lectins showed ability to interact with glycoproteins exhibiting both Nacetyllactosamine and oligomannoside type glycans. The kinetic interaction varied considerably among the proteins under similar experimental conditions. The monosaccharides glucose and mannose were eftective to diminish lectinglycoprotein interactions at concentrations as lower as 25 mM. Upon affinity chromatography, the lectins showed interaction with N-acetyllactosamine type asparagin-glycopeptides but the recognition was limited to biantennary structures. Larger structures possessing three or more antennas were completely devoid of interaction. The lectins seem to bind and discriminate biantennary glyeopeptides/oligosaeeharides of N-aeetyllaetosamine type but failed to reeognize their eounterparts with multi-antennas. They were able to diseriminate native and asialo forms of the biantennary N-aeety//aetosamiane glyeopeptide purified from human serum transferrin. The affinity was maxima when the glycopeptide was previously digested to exhibit galactose and further N-acetylglucosamine in its non-reducing end. Its related oligosaccharide, devoid of sialic acid was recognized by D. virgata but not by D. violacea. Glycopeptides from Orosomucoide, containing mainly a mixture of bi- tri- and tetra-antennary glycopeptides were not recognized by the lectins. Interaction with oligomannosides was drastically differentiated. Affinity was proven to be stronger proportionally to the presence and number of mannose residues a-(1 -> 2) linked in the outer of structures. Thus Man9 was strongly recognized while Man5 was poorly. Of great relevance was that the lectins seems to be able to separate some of the oligomanoside structures within a complex mixture and it is not ruled out that Man8 or Man7 isomers could be fractionated under well-determined experimental conditions. Conclusions: Requisites for bind glycopeptides or oligosaccharides in the carbohydrate-binding site of the lectins include the presence of the monosaccharide inhibitor of the lectin activity and the accessibility for it, but does not define the affinity of the lectins for glycoconjugates. According to the results, the lectins may recognize internal mannose residues in the N-acetyllaetosamine type oligosaeeharides and the affinity increases as much exposed as the trimannoside core is presented. Regarding the recognition of oligomannosides the rule is opposite. The presence of Mannose residues a-(1->2) linked in the outer of structures seems to play a key role in the affinity. However the presence of these residues as occurs in Man6 and mainly in Man7 up to Man9 suggests that the monosaccharide that arbors the lectins should not be the same that plays this role in the interaction with N-acetyllactosamine type. Comparing this performance with that of other mannose-binding legume as Parkia platycephala and non-Iegume leetins it makes clear that the affinity to binding oligosaeeharides is not defined solely by the carbohydrate-binding but instead it, the vicinity of the monosaccharide pocket should possesses structural characteristies to differentiate each lectin-glycoconjugate complex that is supported by the concept of extended binding-site and epitope recognition. Divergences in affinity among Diocleinae lectins ought reflect this hypothesis and thus explain at least in part their differential performance in binding the same structure. This work was supported by grants from CAPES/COFECUB, CNPq, FUNCAPCe and International Foundation for Science.
id UFC-7_1f8ee25c558c8e449e48a777111319af
oai_identifier_str oai:repositorio.ufc.br:riufc/48245
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugadosLectinasGlicoconjugadosReceptores de carboidratosTitle: Molecular Basis of The Glycoconjugate Specificity of Lectins From SubTribe Diocleinae. Background: Proteins exhibiting non-catalytic binding sites towards carbohydrates form a class of very heterogeneous molecules commonly designed lectins. These proteins have been used as study-model molecules to understand the molecular basis of protein-carbohydrate interactions. Seeds of the subtribe Diocleinae are a rich source of lectins whose primary specificity is addressed to glucose/mannose monosaccharides. However, despite this and many other structural features shared by Diocleinae lectins they display difterent recognition to glycoconjugates like N-acetyllactosamine and oligomannoside types. The present work aimed to determine the molecular basis of the oligosaccharide specificity of the Diocleinae lectins towards glycoproteins and purified glycopeptides on a comparative basis to other legume lectins. The experimental strategy included analysis of the kinetic interaction (and inhibition) of soluble lectins with immobilized glycoproteins based on Surface Plasmon Resonance (RPS-BiaCore Technology); Aftinity of immobilized lectins to soluble radio-Iabelled oligosaccharides and glycopeptides and autoradiography analysis of the fractionated structures upon lectin aftinity column. Material and Methods: The seed lectins from Canavalia brasiliensis, C. maritima, C. bonariensis, Cratylia floribunda, Dioclea grandiflora, D. virgata and D. violacea, D. guianensis were purified by aftinity chromatography as previously described in the literature. The purified lectins were assayed for kinetic interaction analysis with immobilized glycoproteins exhibiting distinct oligosaccharide structures of N-acetyllactosamine and oligomannoside types and inhibition of the interaction by monosaccharides. Further, the glycoconjugate specificity of the lectins was investigated by aftinity chromatography of radio-Iabeled glycopeptides and oligosaccharides of difterent origins and well-defined structures on lectin-Sepharose 4B columns. The ability of these lectins to fractionate complex mixtures of closely related oligomannoside structures was determined by autoradiography analysis of the chromatography fractions eluted from the lectin columns. Results: The lectins showed ability to interact with glycoproteins exhibiting both Nacetyllactosamine and oligomannoside type glycans. The kinetic interaction varied considerably among the proteins under similar experimental conditions. The monosaccharides glucose and mannose were eftective to diminish lectinglycoprotein interactions at concentrations as lower as 25 mM. Upon affinity chromatography, the lectins showed interaction with N-acetyllactosamine type asparagin-glycopeptides but the recognition was limited to biantennary structures. Larger structures possessing three or more antennas were completely devoid of interaction. The lectins seem to bind and discriminate biantennary glyeopeptides/oligosaeeharides of N-aeetyllaetosamine type but failed to reeognize their eounterparts with multi-antennas. They were able to diseriminate native and asialo forms of the biantennary N-aeety//aetosamiane glyeopeptide purified from human serum transferrin. The affinity was maxima when the glycopeptide was previously digested to exhibit galactose and further N-acetylglucosamine in its non-reducing end. Its related oligosaccharide, devoid of sialic acid was recognized by D. virgata but not by D. violacea. Glycopeptides from Orosomucoide, containing mainly a mixture of bi- tri- and tetra-antennary glycopeptides were not recognized by the lectins. Interaction with oligomannosides was drastically differentiated. Affinity was proven to be stronger proportionally to the presence and number of mannose residues a-(1 -> 2) linked in the outer of structures. Thus Man9 was strongly recognized while Man5 was poorly. Of great relevance was that the lectins seems to be able to separate some of the oligomanoside structures within a complex mixture and it is not ruled out that Man8 or Man7 isomers could be fractionated under well-determined experimental conditions. Conclusions: Requisites for bind glycopeptides or oligosaccharides in the carbohydrate-binding site of the lectins include the presence of the monosaccharide inhibitor of the lectin activity and the accessibility for it, but does not define the affinity of the lectins for glycoconjugates. According to the results, the lectins may recognize internal mannose residues in the N-acetyllaetosamine type oligosaeeharides and the affinity increases as much exposed as the trimannoside core is presented. Regarding the recognition of oligomannosides the rule is opposite. The presence of Mannose residues a-(1->2) linked in the outer of structures seems to play a key role in the affinity. However the presence of these residues as occurs in Man6 and mainly in Man7 up to Man9 suggests that the monosaccharide that arbors the lectins should not be the same that plays this role in the interaction with N-acetyllactosamine type. Comparing this performance with that of other mannose-binding legume as Parkia platycephala and non-Iegume leetins it makes clear that the affinity to binding oligosaeeharides is not defined solely by the carbohydrate-binding but instead it, the vicinity of the monosaccharide pocket should possesses structural characteristies to differentiate each lectin-glycoconjugate complex that is supported by the concept of extended binding-site and epitope recognition. Divergences in affinity among Diocleinae lectins ought reflect this hypothesis and thus explain at least in part their differential performance in binding the same structure. This work was supported by grants from CAPES/COFECUB, CNPq, FUNCAPCe and International Foundation for Science.Título: Bases Moleculares da Interação de Lectinas da Sub-Tribo Diocleinae Com Glicoconjugados. Introdução: Proteínas que exibem um sítio de ligação não catalítico para carboidratos formam uma classe de moléculas muito heterogênea comumente denominada lectinas. Essas proteínas têm sido utilizadas como modelo de estudo no entendimento das bases moleculares das interações entre proteína-carboidrato. Sementes da subtribo Diocleinae são uma rica fonte de lectinas que apresentam especificidade primária dirigida para monossacarídeos glucose/manose. Todavia, apesar de lectinas Diocleinae compartilharem muitas características, elas exibem reconhecimento diferente para os glicoconjugados N-acetillactosamina e oligomanosídeo. O presente trabalho têm como objetivo determinar as bases moleculares da especificidade por oligossacarídeos de lectinas Diocleinae com realação a glicoproteínas e glicopeptídeos purificados comparando a outras lectinas de leguminosas. A estratégia experimental inclui análise da cinética de interação (e inibição) de lectinas solúveis com glicoproteínas imobilizadas baseado em Ressonância Plasmônica de Superfície (RPS-BiaCore Technology), afinidade de lectinas imobilidadas em Sepharose4B frente a glicopeptídeos e oligossacarídeos solúveis radiomarcados juntamente com a análise de autoradiografia de estruturas fracionadas a partir colunas de afinidade com lectinas imobilizadas. Material e Métodos: Lectinas de sementes de Canavalia brasiliensis, C. marítima, C. bonariensis, Cratylia floribunda, Dioclea grandiflora, D. Virgata, D. Víolacea e D. guianensis foram purificadas por cromatografia de afinidade como previamente descrito na literatura. As lectinas purificadas foram analisadas através de cinética de interação com glicoproteínas imobilizadas que exibiam diferentes estruturas oligossacarídicas dos tipos N-acetillactosamina e oligomanosídica e inibição destas interações por monossacarídeos. Além disso, a especificidade das lectinas por glicoconjugados foi investigada por cromatografia de afinidade de glicopeptídeos e oligossacarídeos de diferentes origens, com estruturas bem definidas, sobre colunas de lectinas-Sepharose 4B. A capacidade dessas lectinas de fracionar misturas complexas de estruturas oligomanosídicas com grande similaridade na estrutura linear foi determinada pela análise de autoradiografias das frações cromatográficas provindas das colunas de lectinas. Resultados: As lectinas mostraram habilidade de interagir com glicoproteínas que exibem glicanos dos tipos N-acetillactosamina e oligomanosídico. A cinética de interação variou consideravelmente entre as proteínas sobre as mesmas condições experimentais. Os monossacarídeos glucose e manose foram eficazes em reduzir a interação lectina-glicoproteínas em concentrações menor que 25mM. A partir do ensaio de cromatografia de afinidade, as lectinas mostraram interação com glicopeptídeos ligados a asparagina do tipo N-acetillactosamina, entretanto o reconhecimento foi limitado as estruturas biantenadas. Estruturas maiores possuindo três ou mais antenas foram completamente destituídas de interação. As lectinas parecem se ligar e diferenciar glicopeptídeos/oligossacarídeos biantenados do tipo N-acetillactosamina, mas falham em reconhecer estruturas multiantenadas. Foram capazes de diferenciar formas nativas e asialo de glicopeptídeos biantenados purificados da sorotransferrina humana. A atividade máxima observada foi quando o glicopeptídeo foi previamente digerido para exibir galactose e N-acetilglucosamina não reduzida na extremidade terminal. Este oligossacarídeo destituído de ácido siálico foi reconhecido por D. virgata, mas não por D. violacea. Glicopeptídeos de orosomucóide, apresentando principalmente uma mistura de glicanos bi- tri- e tetra-antenados não foram reconhecidos pelas lectinas. Interações com oligomanosídeos foram eficazmente diferenciadas. A afinidade foi demonstrada ser proporcionalmente mais forte quando há resíduos de manose ligado em a-(1 ~2) a estruturas externas. Neste caso Man9 foi fortemente reconhecido enquanto Man5 demonstrou uma fraca interação. A grande relevância foi que lectinas parecem ser capazes de separar estruturas oligomanisídicas dentro de uma mistura complexa. Isômeros de Man7 ou Man8 podem ser fracionados sob condições experimentais bem determinadas. Conclusões: Requisitos para ligações de glicopeptídeos ou oligossacarídeos em sítios de ligaçpes de carboidratos de lectinas incluem a presença de inibidor de monossacarídeos da atividade lectínica e a sua acessibilidade, mas não define a afinidade de lectinas para glicoconjugados. De acordo com os resultados, as lectinas podem reconhecer resíduos de manose interna em oligossacarídeos do tipo N-acetillactosamina e a afinidade é maior a proporção que a exposição do núcleo trimanosídeo aumenta. Com relação ao reconhecimento de oligomanosídeos o critério é oposto. A presença de resíduos de manose ligados a-(1 ~2) em outra estrutura parece ser a principal explicação para a afinidade. Entretanto a presença desses resíduos como ocorrem em Man6 e principalmente em Man7 até Man9 sugere que o monossacarídeo aceptor das lectinas poderia não ter o mesmo papel que desempenham na interação com o tipo N-acetillactosamina. Comparando esta performance com outras leguminosas que se ligam a manose como a lectina de semente de Parkia platycephala e lectina de não leguminosa fica claro que a afinidade de ligação a oligossacarídeos não se deve exclusivamente a ligação de carboidratos, além disso, as proximidades da cavidade para monossacarídeos poderiam possuir características estruturais diferenciadas em cada complexo lectina-glicoconjugado o que é sustentado pelo conceito de sítio de ligação estendido e reconhecimento de epítopo. Divergências de afinidades entre lectinas Diocleinae refletem essa hipótese e deste modo explica, ao menos em parte, suas diferenças de ligações pela mesma estrutura. Este trabalho foi financiado com auxílio de CAPES/COFECUB, CNPq, FUNCAP-Ce e International Foundation for Science (IFS).Bases moléculaires de Ia spécificité des lectines de Ia sous-tribu des Diocleinae envers les N- glycoprotéines. Situation du sujet: Les lectines sont des protéines três hétérogênes présentant des sites de reconnaissance des sucres et dépourvues d'activités enzymatiques. Ces lectines sont utilisées pour comprendre les bases moléculaires des interactions protéines-sucres. Les graines de Ia sous-tribu des Diocleinae sont três riches en lectines dites glucose ou mannose spécifiques. Cependant, malgré cette spécificité primaire et en dépit d'éléments structuraux communs, les lectines des Diocleinae reconnaissent différemment des N-glycoprotéines avec des glycannes de type N-acétyllactosaminique ou de type oligomannosidique. Ce travail a pour but Ia détermination des bases moléculaires de Ia reconnaissance par ces lectines de séquences oligosaccharidiques appartenant à des N-glycoprotéines ou à des N-glycopeptides. L'approche expérimentale fait appel à des études d'interaction et d'inhibition des interactions en temps réel entre des glycoprotéines immobilisées et les lectines en solution suivies par résonance plasmonique de surface (Technologie RPS-BiaCore) et à I'étude du comportement d'oligosaccharides ou de glycopeptides radiomarqués sur des colonnes de lectines immobilisées. Matériels et méthodes: Les lectines de graines de Canavalía brasiliensis, C. marítima, C. bonariensis, Cratylia floribunda, Dioclea grandiflora, D. virgata, D. violacea et D. guianensis ont été isolées par chromatographie d'aftinité selon les méthodes décrites dans Ia Iittérature. L'analyse des interactions entre ces lectines purifiées et des N-glycoprotéines avec des structures glycanniques de type N-acétyllactosaminique ou oligomannosidique connues immobilisées ainsi que I'inhibition de ces interactions par diftérents monosaccharides a été suivie en temps réel par résonance plasmonique de surface (appareil BiaCore). La spécificité fine de ces lectines a également été suivie par étude du comportement chromatographique d'oligosaccharides ou de N-glycopeptides de structures connues sur des colonnes de lectines immobilisées sur Sepharose 4B. La possibilité de fractionner un mélange complexe de structures oligomannosidiques à I'aide de ces lectines immobilisées a été étudiée par analyse autoradiographique des diftérentes fractions obtenues. Résultats: Les lectines de Diocleinae interagissent avec diftérentes Nglycoprotéines présentant des glycannes de type N-acétyllactosaminique ou oligomannosidique. Cependant, dans des conditions identiques, les cinétiques d'interaction obtenues avec les diftérentes lectines varient considérablement. O'autre part, même à faible concentration (25mM), le glucose et le mannose inhibent les interactions lectines-glycoprotéines. Les lectines immobilisées présentent une affinité pour des N-glycopeptides contenant des glycannes de type N-acétyllactosaminique biantennés ou pour les oligosaccharides correspondants. Des N-glycopeptides avec des glycannes de type N-acétyllactosaminique tri- ou tétraantennés ou les oligosaccharides correspondants ne sont pas reconnus. L'affinité optimale est dirigée envers des structures biantennées présentant 2 résidus de N-acétylglucosamine en position terminale non réductrice. Cependant, les asialoglycannes biantennés correspondants sont reconnus par Ia lectine de D. virgata alors que celle de D. violacea ne les reconnait pas. L'affinité des lectines envers différentes structures oligomannosidiques dépend de Ia présence et du nombre de résidus de mannose liés en, 1-2 en position terminale non réductrice.xwvutsrqponm Conclusions: Les résultats obtenus montrent que les lectines de Diocleinae étudiées sont capables de reconnaitre les résidus de mannose internes du noyau trimannosidique de glycannes de type N-acétyllactosaminique biantennés. Cette affinité augmente en fonction de I'accessibilité du noyau trimannosidique à Ia lectine. D'autre part, I'affinité de ces lectines envers différentes structures oligomannosidiques dépend de Ia présence de résidus de mannose liés en, 1-2 en position terminale non réductrice et augmente en fonction du nombre de ces résidus de mannose accessibles à Ia lectine. Ce travail a été subventionné par le CAPES/COFECUB, le CNPq, le FUNCAP-Ce et l'lnternational Foundation for Science.Ramos, Márcio VianaBomfim, Liezelotte Rezende2019-12-09T13:27:39Z2019-12-09T13:27:39Z2005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfBOMFIM, Liezelotte Rezende. Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados. 2005. 167 f. Tese (Doutorado em Bioquímica)-Universidade Federal do Ceará, Fortaleza, 2005.http://www.repositorio.ufc.br/handle/riufc/48245porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-12-09T13:27:39Zoai:repositorio.ufc.br:riufc/48245Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-12-09T13:27:39Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados
title Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados
spellingShingle Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados
Bomfim, Liezelotte Rezende
Lectinas
Glicoconjugados
Receptores de carboidratos
title_short Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados
title_full Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados
title_fullStr Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados
title_full_unstemmed Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados
title_sort Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados
author Bomfim, Liezelotte Rezende
author_facet Bomfim, Liezelotte Rezende
author_role author
dc.contributor.none.fl_str_mv Ramos, Márcio Viana
dc.contributor.author.fl_str_mv Bomfim, Liezelotte Rezende
dc.subject.por.fl_str_mv Lectinas
Glicoconjugados
Receptores de carboidratos
topic Lectinas
Glicoconjugados
Receptores de carboidratos
description Title: Molecular Basis of The Glycoconjugate Specificity of Lectins From SubTribe Diocleinae. Background: Proteins exhibiting non-catalytic binding sites towards carbohydrates form a class of very heterogeneous molecules commonly designed lectins. These proteins have been used as study-model molecules to understand the molecular basis of protein-carbohydrate interactions. Seeds of the subtribe Diocleinae are a rich source of lectins whose primary specificity is addressed to glucose/mannose monosaccharides. However, despite this and many other structural features shared by Diocleinae lectins they display difterent recognition to glycoconjugates like N-acetyllactosamine and oligomannoside types. The present work aimed to determine the molecular basis of the oligosaccharide specificity of the Diocleinae lectins towards glycoproteins and purified glycopeptides on a comparative basis to other legume lectins. The experimental strategy included analysis of the kinetic interaction (and inhibition) of soluble lectins with immobilized glycoproteins based on Surface Plasmon Resonance (RPS-BiaCore Technology); Aftinity of immobilized lectins to soluble radio-Iabelled oligosaccharides and glycopeptides and autoradiography analysis of the fractionated structures upon lectin aftinity column. Material and Methods: The seed lectins from Canavalia brasiliensis, C. maritima, C. bonariensis, Cratylia floribunda, Dioclea grandiflora, D. virgata and D. violacea, D. guianensis were purified by aftinity chromatography as previously described in the literature. The purified lectins were assayed for kinetic interaction analysis with immobilized glycoproteins exhibiting distinct oligosaccharide structures of N-acetyllactosamine and oligomannoside types and inhibition of the interaction by monosaccharides. Further, the glycoconjugate specificity of the lectins was investigated by aftinity chromatography of radio-Iabeled glycopeptides and oligosaccharides of difterent origins and well-defined structures on lectin-Sepharose 4B columns. The ability of these lectins to fractionate complex mixtures of closely related oligomannoside structures was determined by autoradiography analysis of the chromatography fractions eluted from the lectin columns. Results: The lectins showed ability to interact with glycoproteins exhibiting both Nacetyllactosamine and oligomannoside type glycans. The kinetic interaction varied considerably among the proteins under similar experimental conditions. The monosaccharides glucose and mannose were eftective to diminish lectinglycoprotein interactions at concentrations as lower as 25 mM. Upon affinity chromatography, the lectins showed interaction with N-acetyllactosamine type asparagin-glycopeptides but the recognition was limited to biantennary structures. Larger structures possessing three or more antennas were completely devoid of interaction. The lectins seem to bind and discriminate biantennary glyeopeptides/oligosaeeharides of N-aeetyllaetosamine type but failed to reeognize their eounterparts with multi-antennas. They were able to diseriminate native and asialo forms of the biantennary N-aeety//aetosamiane glyeopeptide purified from human serum transferrin. The affinity was maxima when the glycopeptide was previously digested to exhibit galactose and further N-acetylglucosamine in its non-reducing end. Its related oligosaccharide, devoid of sialic acid was recognized by D. virgata but not by D. violacea. Glycopeptides from Orosomucoide, containing mainly a mixture of bi- tri- and tetra-antennary glycopeptides were not recognized by the lectins. Interaction with oligomannosides was drastically differentiated. Affinity was proven to be stronger proportionally to the presence and number of mannose residues a-(1 -> 2) linked in the outer of structures. Thus Man9 was strongly recognized while Man5 was poorly. Of great relevance was that the lectins seems to be able to separate some of the oligomanoside structures within a complex mixture and it is not ruled out that Man8 or Man7 isomers could be fractionated under well-determined experimental conditions. Conclusions: Requisites for bind glycopeptides or oligosaccharides in the carbohydrate-binding site of the lectins include the presence of the monosaccharide inhibitor of the lectin activity and the accessibility for it, but does not define the affinity of the lectins for glycoconjugates. According to the results, the lectins may recognize internal mannose residues in the N-acetyllaetosamine type oligosaeeharides and the affinity increases as much exposed as the trimannoside core is presented. Regarding the recognition of oligomannosides the rule is opposite. The presence of Mannose residues a-(1->2) linked in the outer of structures seems to play a key role in the affinity. However the presence of these residues as occurs in Man6 and mainly in Man7 up to Man9 suggests that the monosaccharide that arbors the lectins should not be the same that plays this role in the interaction with N-acetyllactosamine type. Comparing this performance with that of other mannose-binding legume as Parkia platycephala and non-Iegume leetins it makes clear that the affinity to binding oligosaeeharides is not defined solely by the carbohydrate-binding but instead it, the vicinity of the monosaccharide pocket should possesses structural characteristies to differentiate each lectin-glycoconjugate complex that is supported by the concept of extended binding-site and epitope recognition. Divergences in affinity among Diocleinae lectins ought reflect this hypothesis and thus explain at least in part their differential performance in binding the same structure. This work was supported by grants from CAPES/COFECUB, CNPq, FUNCAPCe and International Foundation for Science.
publishDate 2005
dc.date.none.fl_str_mv 2005
2019-12-09T13:27:39Z
2019-12-09T13:27:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BOMFIM, Liezelotte Rezende. Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados. 2005. 167 f. Tese (Doutorado em Bioquímica)-Universidade Federal do Ceará, Fortaleza, 2005.
http://www.repositorio.ufc.br/handle/riufc/48245
identifier_str_mv BOMFIM, Liezelotte Rezende. Bases moleculares da interação de lectinas da subtribo Diocleinae com glicoconjugados. 2005. 167 f. Tese (Doutorado em Bioquímica)-Universidade Federal do Ceará, Fortaleza, 2005.
url http://www.repositorio.ufc.br/handle/riufc/48245
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1809935805234282496