Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/59412 |
Resumo: | The three-parameter generalized extreme-value (GEV) distribution has found wide application for describing annual floods, rainfall, wind speeds, wave heights, snow depths, and other maxima. Previous studies show that small-sample maximum-likelihood estimators (MLE) of parameters are unstable and recommend L moment estimators. More recent research shows that method of moments quantile estimators have for −0.25 < κ < 0.30 smaller root-mean-square error than L moments and MLEs. Examination of the behavior of MLEs in small samples demonstrates that absurd values of the GEV-shape parameter κ can be generated. Use of a Bayesian prior distribution to restrict κ values to a statistically/physically reasonable range in a generalized maximum likelihood (GML) analysis eliminates this problem. In our examples the GML estimator did substantially better than moment and L moment quantile estimators for − 0.4 ≤ κ ≤ 0. |
id |
UFC-7_23c30465ddee8c9433962a2b650f47d2 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/59412 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic dataGeneralized maximum-likelihood generalized extreme-value quantile estimators for hydrologic dataInundaçõesCheiasParâmetrosThe three-parameter generalized extreme-value (GEV) distribution has found wide application for describing annual floods, rainfall, wind speeds, wave heights, snow depths, and other maxima. Previous studies show that small-sample maximum-likelihood estimators (MLE) of parameters are unstable and recommend L moment estimators. More recent research shows that method of moments quantile estimators have for −0.25 < κ < 0.30 smaller root-mean-square error than L moments and MLEs. Examination of the behavior of MLEs in small samples demonstrates that absurd values of the GEV-shape parameter κ can be generated. Use of a Bayesian prior distribution to restrict κ values to a statistically/physically reasonable range in a generalized maximum likelihood (GML) analysis eliminates this problem. In our examples the GML estimator did substantially better than moment and L moment quantile estimators for − 0.4 ≤ κ ≤ 0.Water Resources Research2021-07-09T11:22:25Z2021-07-09T11:22:25Z2000info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMARTINS, Eduardo Savio Passos Rodrigues; STEDINGER, Jery Russell. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, United States, v. 36, n.3, p. 737-744, 2000.1944-7973http://www.repositorio.ufc.br/handle/riufc/59412Martins, Eduardo Sávio Passos RodriguesStedinger, Jery Russellengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-11-29T16:51:04Zoai:repositorio.ufc.br:riufc/59412Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:48:02.624455Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data |
title |
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data |
spellingShingle |
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data Martins, Eduardo Sávio Passos Rodrigues Inundações Cheias Parâmetros |
title_short |
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data |
title_full |
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data |
title_fullStr |
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data |
title_full_unstemmed |
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data |
title_sort |
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data |
author |
Martins, Eduardo Sávio Passos Rodrigues |
author_facet |
Martins, Eduardo Sávio Passos Rodrigues Stedinger, Jery Russell |
author_role |
author |
author2 |
Stedinger, Jery Russell |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Martins, Eduardo Sávio Passos Rodrigues Stedinger, Jery Russell |
dc.subject.por.fl_str_mv |
Inundações Cheias Parâmetros |
topic |
Inundações Cheias Parâmetros |
description |
The three-parameter generalized extreme-value (GEV) distribution has found wide application for describing annual floods, rainfall, wind speeds, wave heights, snow depths, and other maxima. Previous studies show that small-sample maximum-likelihood estimators (MLE) of parameters are unstable and recommend L moment estimators. More recent research shows that method of moments quantile estimators have for −0.25 < κ < 0.30 smaller root-mean-square error than L moments and MLEs. Examination of the behavior of MLEs in small samples demonstrates that absurd values of the GEV-shape parameter κ can be generated. Use of a Bayesian prior distribution to restrict κ values to a statistically/physically reasonable range in a generalized maximum likelihood (GML) analysis eliminates this problem. In our examples the GML estimator did substantially better than moment and L moment quantile estimators for − 0.4 ≤ κ ≤ 0. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 2021-07-09T11:22:25Z 2021-07-09T11:22:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MARTINS, Eduardo Savio Passos Rodrigues; STEDINGER, Jery Russell. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, United States, v. 36, n.3, p. 737-744, 2000. 1944-7973 http://www.repositorio.ufc.br/handle/riufc/59412 |
identifier_str_mv |
MARTINS, Eduardo Savio Passos Rodrigues; STEDINGER, Jery Russell. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, United States, v. 36, n.3, p. 737-744, 2000. 1944-7973 |
url |
http://www.repositorio.ufc.br/handle/riufc/59412 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Water Resources Research |
publisher.none.fl_str_mv |
Water Resources Research |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028951376789504 |