A new look at nonlinear time series prediction with NARX recurrent neural network

Detalhes bibliográficos
Autor(a) principal: Meneses, José Wally Mendonça de
Data de Publicação: 2006
Outros Autores: Barreto, Guilherme de Alencar
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/70658
Resumo: The NARX network is a recurrent neural architecture commonly used for input-output modeling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to chaotic time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original architecture of the NARX network to fully explore its computational power to improve prediction performance. We use the well-known chaotic laser time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures.
id UFC-7_3aada9f973b8360a5d8b71c89e10b546
oai_identifier_str oai:repositorio.ufc.br:riufc/70658
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling A new look at nonlinear time series prediction with NARX recurrent neural networkThe NARX network is a recurrent neural architecture commonly used for input-output modeling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to chaotic time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original architecture of the NARX network to fully explore its computational power to improve prediction performance. We use the well-known chaotic laser time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures.Simpósio Brasileiro de Redes Neurais2023-02-09T12:53:47Z2023-02-09T12:53:47Z2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfMENEZES, J. W. M.; BARRETO, G. A. A new look at nonlinear time series prediction with NARX recurrent neural network. In: SIMPÓSIO BRASILEIRO DE REDES NEURAIS, 9., 2006, Ribeirão Preto. Anais... Ribeirão Preto: IEEE, 2006. p. 1-6.http://www.repositorio.ufc.br/handle/riufc/70658Meneses, José Wally Mendonça deBarreto, Guilherme de Alencarengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-09T12:53:47Zoai:repositorio.ufc.br:riufc/70658Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T19:01:39.161974Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv A new look at nonlinear time series prediction with NARX recurrent neural network
title A new look at nonlinear time series prediction with NARX recurrent neural network
spellingShingle A new look at nonlinear time series prediction with NARX recurrent neural network
Meneses, José Wally Mendonça de
title_short A new look at nonlinear time series prediction with NARX recurrent neural network
title_full A new look at nonlinear time series prediction with NARX recurrent neural network
title_fullStr A new look at nonlinear time series prediction with NARX recurrent neural network
title_full_unstemmed A new look at nonlinear time series prediction with NARX recurrent neural network
title_sort A new look at nonlinear time series prediction with NARX recurrent neural network
author Meneses, José Wally Mendonça de
author_facet Meneses, José Wally Mendonça de
Barreto, Guilherme de Alencar
author_role author
author2 Barreto, Guilherme de Alencar
author2_role author
dc.contributor.author.fl_str_mv Meneses, José Wally Mendonça de
Barreto, Guilherme de Alencar
description The NARX network is a recurrent neural architecture commonly used for input-output modeling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to chaotic time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original architecture of the NARX network to fully explore its computational power to improve prediction performance. We use the well-known chaotic laser time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures.
publishDate 2006
dc.date.none.fl_str_mv 2006
2023-02-09T12:53:47Z
2023-02-09T12:53:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv MENEZES, J. W. M.; BARRETO, G. A. A new look at nonlinear time series prediction with NARX recurrent neural network. In: SIMPÓSIO BRASILEIRO DE REDES NEURAIS, 9., 2006, Ribeirão Preto. Anais... Ribeirão Preto: IEEE, 2006. p. 1-6.
http://www.repositorio.ufc.br/handle/riufc/70658
identifier_str_mv MENEZES, J. W. M.; BARRETO, G. A. A new look at nonlinear time series prediction with NARX recurrent neural network. In: SIMPÓSIO BRASILEIRO DE REDES NEURAIS, 9., 2006, Ribeirão Preto. Anais... Ribeirão Preto: IEEE, 2006. p. 1-6.
url http://www.repositorio.ufc.br/handle/riufc/70658
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Simpósio Brasileiro de Redes Neurais
publisher.none.fl_str_mv Simpósio Brasileiro de Redes Neurais
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813029038193639424