A new look at nonlinear time series prediction with NARX recurrent neural network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/70658 |
Resumo: | The NARX network is a recurrent neural architecture commonly used for input-output modeling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to chaotic time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original architecture of the NARX network to fully explore its computational power to improve prediction performance. We use the well-known chaotic laser time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures. |
id |
UFC-7_3aada9f973b8360a5d8b71c89e10b546 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/70658 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
A new look at nonlinear time series prediction with NARX recurrent neural networkThe NARX network is a recurrent neural architecture commonly used for input-output modeling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to chaotic time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original architecture of the NARX network to fully explore its computational power to improve prediction performance. We use the well-known chaotic laser time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures.Simpósio Brasileiro de Redes Neurais2023-02-09T12:53:47Z2023-02-09T12:53:47Z2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfMENEZES, J. W. M.; BARRETO, G. A. A new look at nonlinear time series prediction with NARX recurrent neural network. In: SIMPÓSIO BRASILEIRO DE REDES NEURAIS, 9., 2006, Ribeirão Preto. Anais... Ribeirão Preto: IEEE, 2006. p. 1-6.http://www.repositorio.ufc.br/handle/riufc/70658Meneses, José Wally Mendonça deBarreto, Guilherme de Alencarengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-09T12:53:47Zoai:repositorio.ufc.br:riufc/70658Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T19:01:39.161974Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
A new look at nonlinear time series prediction with NARX recurrent neural network |
title |
A new look at nonlinear time series prediction with NARX recurrent neural network |
spellingShingle |
A new look at nonlinear time series prediction with NARX recurrent neural network Meneses, José Wally Mendonça de |
title_short |
A new look at nonlinear time series prediction with NARX recurrent neural network |
title_full |
A new look at nonlinear time series prediction with NARX recurrent neural network |
title_fullStr |
A new look at nonlinear time series prediction with NARX recurrent neural network |
title_full_unstemmed |
A new look at nonlinear time series prediction with NARX recurrent neural network |
title_sort |
A new look at nonlinear time series prediction with NARX recurrent neural network |
author |
Meneses, José Wally Mendonça de |
author_facet |
Meneses, José Wally Mendonça de Barreto, Guilherme de Alencar |
author_role |
author |
author2 |
Barreto, Guilherme de Alencar |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Meneses, José Wally Mendonça de Barreto, Guilherme de Alencar |
description |
The NARX network is a recurrent neural architecture commonly used for input-output modeling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to chaotic time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original architecture of the NARX network to fully explore its computational power to improve prediction performance. We use the well-known chaotic laser time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 2023-02-09T12:53:47Z 2023-02-09T12:53:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MENEZES, J. W. M.; BARRETO, G. A. A new look at nonlinear time series prediction with NARX recurrent neural network. In: SIMPÓSIO BRASILEIRO DE REDES NEURAIS, 9., 2006, Ribeirão Preto. Anais... Ribeirão Preto: IEEE, 2006. p. 1-6. http://www.repositorio.ufc.br/handle/riufc/70658 |
identifier_str_mv |
MENEZES, J. W. M.; BARRETO, G. A. A new look at nonlinear time series prediction with NARX recurrent neural network. In: SIMPÓSIO BRASILEIRO DE REDES NEURAIS, 9., 2006, Ribeirão Preto. Anais... Ribeirão Preto: IEEE, 2006. p. 1-6. |
url |
http://www.repositorio.ufc.br/handle/riufc/70658 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Simpósio Brasileiro de Redes Neurais |
publisher.none.fl_str_mv |
Simpósio Brasileiro de Redes Neurais |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813029038193639424 |