A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts

Detalhes bibliográficos
Autor(a) principal: Pitombeira Neto, Anselmo Ramalho
Data de Publicação: 2016
Outros Autores: Loureiro, Carlos Felipe Grangeiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/31645
Resumo: We propose a dynamic linear model (DLM) for the estimation of day-to-day time-varying origin– destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd.
id UFC-7_3f15a89492704bc5e952ba419ff2369c
oai_identifier_str oai:repositorio.ufc.br:riufc/31645
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling A dynamic linear model for the estimation of time-varying origin–destination matrices from link countsTransportesModelos lineares (Estatística)MatrizesDynamic linear modelsMatricesWe propose a dynamic linear model (DLM) for the estimation of day-to-day time-varying origin– destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd.JOURNAL OF ADVANCED TRANSPORTATION2018-04-30T12:34:41Z2018-04-30T12:34:41Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfPITOMBEIRA NETO, A. R.; LOUREIRO, C. F. G. A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts. J. Adv. Transp., v. 50, p. 2116-2129, 2016.0197-6729http://www.repositorio.ufc.br/handle/riufc/31645Pitombeira Neto, Anselmo RamalhoLoureiro, Carlos Felipe Grangeiroengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2018-11-28T11:29:10Zoai:repositorio.ufc.br:riufc/31645Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:17:19.610729Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
title A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
spellingShingle A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
Pitombeira Neto, Anselmo Ramalho
Transportes
Modelos lineares (Estatística)
Matrizes
Dynamic linear models
Matrices
title_short A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
title_full A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
title_fullStr A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
title_full_unstemmed A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
title_sort A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
author Pitombeira Neto, Anselmo Ramalho
author_facet Pitombeira Neto, Anselmo Ramalho
Loureiro, Carlos Felipe Grangeiro
author_role author
author2 Loureiro, Carlos Felipe Grangeiro
author2_role author
dc.contributor.author.fl_str_mv Pitombeira Neto, Anselmo Ramalho
Loureiro, Carlos Felipe Grangeiro
dc.subject.por.fl_str_mv Transportes
Modelos lineares (Estatística)
Matrizes
Dynamic linear models
Matrices
topic Transportes
Modelos lineares (Estatística)
Matrizes
Dynamic linear models
Matrices
description We propose a dynamic linear model (DLM) for the estimation of day-to-day time-varying origin– destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd.
publishDate 2016
dc.date.none.fl_str_mv 2016
2018-04-30T12:34:41Z
2018-04-30T12:34:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv PITOMBEIRA NETO, A. R.; LOUREIRO, C. F. G. A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts. J. Adv. Transp., v. 50, p. 2116-2129, 2016.
0197-6729
http://www.repositorio.ufc.br/handle/riufc/31645
identifier_str_mv PITOMBEIRA NETO, A. R.; LOUREIRO, C. F. G. A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts. J. Adv. Transp., v. 50, p. 2116-2129, 2016.
0197-6729
url http://www.repositorio.ufc.br/handle/riufc/31645
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv JOURNAL OF ADVANCED TRANSPORTATION
publisher.none.fl_str_mv JOURNAL OF ADVANCED TRANSPORTATION
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028739133472768