A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/31645 |
Resumo: | We propose a dynamic linear model (DLM) for the estimation of day-to-day time-varying origin– destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd. |
id |
UFC-7_3f15a89492704bc5e952ba419ff2369c |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/31645 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
A dynamic linear model for the estimation of time-varying origin–destination matrices from link countsTransportesModelos lineares (Estatística)MatrizesDynamic linear modelsMatricesWe propose a dynamic linear model (DLM) for the estimation of day-to-day time-varying origin– destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd.JOURNAL OF ADVANCED TRANSPORTATION2018-04-30T12:34:41Z2018-04-30T12:34:41Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfPITOMBEIRA NETO, A. R.; LOUREIRO, C. F. G. A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts. J. Adv. Transp., v. 50, p. 2116-2129, 2016.0197-6729http://www.repositorio.ufc.br/handle/riufc/31645Pitombeira Neto, Anselmo RamalhoLoureiro, Carlos Felipe Grangeiroengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2018-11-28T11:29:10Zoai:repositorio.ufc.br:riufc/31645Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:17:19.610729Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts |
title |
A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts |
spellingShingle |
A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts Pitombeira Neto, Anselmo Ramalho Transportes Modelos lineares (Estatística) Matrizes Dynamic linear models Matrices |
title_short |
A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts |
title_full |
A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts |
title_fullStr |
A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts |
title_full_unstemmed |
A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts |
title_sort |
A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts |
author |
Pitombeira Neto, Anselmo Ramalho |
author_facet |
Pitombeira Neto, Anselmo Ramalho Loureiro, Carlos Felipe Grangeiro |
author_role |
author |
author2 |
Loureiro, Carlos Felipe Grangeiro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Pitombeira Neto, Anselmo Ramalho Loureiro, Carlos Felipe Grangeiro |
dc.subject.por.fl_str_mv |
Transportes Modelos lineares (Estatística) Matrizes Dynamic linear models Matrices |
topic |
Transportes Modelos lineares (Estatística) Matrizes Dynamic linear models Matrices |
description |
We propose a dynamic linear model (DLM) for the estimation of day-to-day time-varying origin– destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2018-04-30T12:34:41Z 2018-04-30T12:34:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
PITOMBEIRA NETO, A. R.; LOUREIRO, C. F. G. A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts. J. Adv. Transp., v. 50, p. 2116-2129, 2016. 0197-6729 http://www.repositorio.ufc.br/handle/riufc/31645 |
identifier_str_mv |
PITOMBEIRA NETO, A. R.; LOUREIRO, C. F. G. A dynamic linear model for the estimation of time-varying origin–destination matrices from link counts. J. Adv. Transp., v. 50, p. 2116-2129, 2016. 0197-6729 |
url |
http://www.repositorio.ufc.br/handle/riufc/31645 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
JOURNAL OF ADVANCED TRANSPORTATION |
publisher.none.fl_str_mv |
JOURNAL OF ADVANCED TRANSPORTATION |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028739133472768 |