Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/31131 |
Resumo: | The study and determination of carbon stocks in the soil as well as their spatial and temporal distribution is essential for the understanding and quantification of the soil storage potential and, from this, develop management plans for this Carbon to reduce environmental impacts. Methods involving remote sensing such as DMS (Digital Soil Mapping) enable rapid and low-cost effective analysis of large areas from small in loco sampling. In face of that, the objective of this study was to evaluate the viability of using orbital sensor images (Landsat-8 TM) associated to environmental variables through regression tree models for the mapping of soil organic carbon (SOC) distribution in layer (0-20 cm) in a watershed in the Caatinga biome. The experiment was carried out in the Bengué Representative Basin (BRB), located in the southwest of the state of Ceará, which has an area of 1000 km². As a validation area, it was selected the Experimental Basin of Aiuaba (BEA) inserted in BRB and with an area of 12 Km². The soil collection processes were carried out in March 2017. There were collected 48 samples in the BRB and 12 in the BEA, the samples were analyzed in the soil laboratory of EMBRAPA Tropical Agroindustry for the determination of SOC and clay contents. As predictive environmental variables, soil texture, classes of use and occupation, precipitation, topographic aspects, bands 1 to 6 of Landsat-8 TM Satellite and NDVI were selected. Three regression tree models were constructed using software R, the first tree consisting of all variables, the second only by climatic and topographic data, and the last only by data obtained through geoprocessing. The models after their construction were submitted to indices to evaluate the efficiency of their predictions. From the construction of the prediction models based on regression trees, the determination of the Total Organic Carbon content in the (0-0.20 m) layer can be carried out for a characteristic area of Caatinga vegetation. The association of environmental variables with Landsat-8 satellite images proved to be very promising as a tool for mapping and predicting TOC levels. The main variables that had influence in the prediction models were the reflectance data of the multispectral images, besides the data of precipitation. The prediction model constructed only with multispectral image reflectance data can be considered as promising as the complete model in predicting TOC contents for the soils of a catchment area of the Caatinga, showing itself as a promising tool for TOC management in this biome. |
id |
UFC-7_5a82575a1a8d85f44c75d0f79569f06e |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/31131 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remotoDigital prediction of soil organic carbon in the Caatinga biome aided by remote sensingLandsat-8 TMCarbono orgânico do soloÁrvores de regressãoThe study and determination of carbon stocks in the soil as well as their spatial and temporal distribution is essential for the understanding and quantification of the soil storage potential and, from this, develop management plans for this Carbon to reduce environmental impacts. Methods involving remote sensing such as DMS (Digital Soil Mapping) enable rapid and low-cost effective analysis of large areas from small in loco sampling. In face of that, the objective of this study was to evaluate the viability of using orbital sensor images (Landsat-8 TM) associated to environmental variables through regression tree models for the mapping of soil organic carbon (SOC) distribution in layer (0-20 cm) in a watershed in the Caatinga biome. The experiment was carried out in the Bengué Representative Basin (BRB), located in the southwest of the state of Ceará, which has an area of 1000 km². As a validation area, it was selected the Experimental Basin of Aiuaba (BEA) inserted in BRB and with an area of 12 Km². The soil collection processes were carried out in March 2017. There were collected 48 samples in the BRB and 12 in the BEA, the samples were analyzed in the soil laboratory of EMBRAPA Tropical Agroindustry for the determination of SOC and clay contents. As predictive environmental variables, soil texture, classes of use and occupation, precipitation, topographic aspects, bands 1 to 6 of Landsat-8 TM Satellite and NDVI were selected. Three regression tree models were constructed using software R, the first tree consisting of all variables, the second only by climatic and topographic data, and the last only by data obtained through geoprocessing. The models after their construction were submitted to indices to evaluate the efficiency of their predictions. From the construction of the prediction models based on regression trees, the determination of the Total Organic Carbon content in the (0-0.20 m) layer can be carried out for a characteristic area of Caatinga vegetation. The association of environmental variables with Landsat-8 satellite images proved to be very promising as a tool for mapping and predicting TOC levels. The main variables that had influence in the prediction models were the reflectance data of the multispectral images, besides the data of precipitation. The prediction model constructed only with multispectral image reflectance data can be considered as promising as the complete model in predicting TOC contents for the soils of a catchment area of the Caatinga, showing itself as a promising tool for TOC management in this biome.O estudo e determinação dos estoques de carbono no solo bem como sua distribuição espaço-temporal é essencial para a compreensão e quantificação do potencial do solo no armazenamento e, a partir disto, desenvolver planos de manejo de modo a reduzir os impactos ambientais. Os métodos que envolvem sensoriamento remoto como o MDS (Mapeamento Digital do Solo) possibilitam análises de uma maneira rápida e de baixo custo de vastas áreas partindo de uma pequena amostragem in loco. Diante disto objetivou-se com o presente trabalho avaliar a viabilidade do uso de imagens de sensores orbitais (Landsat-8 TM) associadas às variáveis ambientais através de modelos de árvores de regressão para o mapeamento da distribuição do Carbono Orgânico do Solo (COS) na camada de (0-20 cm) em uma bacia hidrográfica no bioma Caatinga. O experimento foi realizado na Bacia Representativa do Bengué (BRB) que se localiza ao sudoeste do estado do Ceará, esta possui uma área de, aproximadamente, 1.000 Km², como área de validação selecionou-se a Bacia Experimental de Aiuaba (BEA) aninhada na BRB e com uma área de 12 km². A campanha de coleta de solo foi realizada em março de 2017. Foram coletadas na BRB 48 amostras e 12 na BEA, as amostras foram analisadas no laboratório de solos da EMBRAPA Agroindústria Tropical para a determinação dos teores de COS e argila. Como variáveis ambientais preditoras selecionou-se a textura do solo, classes de uso e ocupação, precipitação, aspectos topográficos, as bandas 1 a 6 do Satélite Landsat-8 TM e o NDVI. Foram construídos três modelos de árvore de regressão utilizando-se o software R a primeira árvore constituída por todas as variáveis, a segunda apenas pelos dados climáticos e topográficos, e a última apenas pelos dados obtidos via geoprocessamento. Os modelos, após a sua construção, foram submetidos a índices para avaliação da eficiência de suas predições. A partir da construção dos modelos de predição baseados em árvores de regressão pode-se realizar a determinação dos teores de Carbono Orgânico Total na camada de 0-0,20m para uma área característica de vegetação de Caatinga. A associação de variáveis ambientais com imagens do satélite Landsat-8 se mostrou bastante promissora como ferramenta de mapeamento e predição dos teores de COT. As principais variáveis que apresentaram influência nos modelos de predição foram os dados de reflectância das imagens multiespectrais, além dos dados de precipitação. O modelo de predição construído apenas com dados de reflectância de imagens multiespectrais se mostrou tão promissor quanto o modelo completo na predição dos teores de COT para os solos de uma bacia hidrográfica da Caatinga, se mostrando uma ferramenta promissora para o manejo do COT neste bioma.Costa, Carlos Alexandre GomesLourenço, Valéria Ramos2018-04-16T23:21:33Z2018-04-16T23:21:33Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfLOURENÇO, Valéria Ramos. Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto. 2017. 61f. Monografia (Graduação em Agronomia)-Universidade Federal do Ceará, Fortaleza, 2017.http://www.repositorio.ufc.br/handle/riufc/31131porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-09-12T15:14:45Zoai:repositorio.ufc.br:riufc/31131Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:47:39.613792Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto Digital prediction of soil organic carbon in the Caatinga biome aided by remote sensing |
title |
Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto |
spellingShingle |
Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto Lourenço, Valéria Ramos Landsat-8 TM Carbono orgânico do solo Árvores de regressão |
title_short |
Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto |
title_full |
Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto |
title_fullStr |
Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto |
title_full_unstemmed |
Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto |
title_sort |
Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto |
author |
Lourenço, Valéria Ramos |
author_facet |
Lourenço, Valéria Ramos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Costa, Carlos Alexandre Gomes |
dc.contributor.author.fl_str_mv |
Lourenço, Valéria Ramos |
dc.subject.por.fl_str_mv |
Landsat-8 TM Carbono orgânico do solo Árvores de regressão |
topic |
Landsat-8 TM Carbono orgânico do solo Árvores de regressão |
description |
The study and determination of carbon stocks in the soil as well as their spatial and temporal distribution is essential for the understanding and quantification of the soil storage potential and, from this, develop management plans for this Carbon to reduce environmental impacts. Methods involving remote sensing such as DMS (Digital Soil Mapping) enable rapid and low-cost effective analysis of large areas from small in loco sampling. In face of that, the objective of this study was to evaluate the viability of using orbital sensor images (Landsat-8 TM) associated to environmental variables through regression tree models for the mapping of soil organic carbon (SOC) distribution in layer (0-20 cm) in a watershed in the Caatinga biome. The experiment was carried out in the Bengué Representative Basin (BRB), located in the southwest of the state of Ceará, which has an area of 1000 km². As a validation area, it was selected the Experimental Basin of Aiuaba (BEA) inserted in BRB and with an area of 12 Km². The soil collection processes were carried out in March 2017. There were collected 48 samples in the BRB and 12 in the BEA, the samples were analyzed in the soil laboratory of EMBRAPA Tropical Agroindustry for the determination of SOC and clay contents. As predictive environmental variables, soil texture, classes of use and occupation, precipitation, topographic aspects, bands 1 to 6 of Landsat-8 TM Satellite and NDVI were selected. Three regression tree models were constructed using software R, the first tree consisting of all variables, the second only by climatic and topographic data, and the last only by data obtained through geoprocessing. The models after their construction were submitted to indices to evaluate the efficiency of their predictions. From the construction of the prediction models based on regression trees, the determination of the Total Organic Carbon content in the (0-0.20 m) layer can be carried out for a characteristic area of Caatinga vegetation. The association of environmental variables with Landsat-8 satellite images proved to be very promising as a tool for mapping and predicting TOC levels. The main variables that had influence in the prediction models were the reflectance data of the multispectral images, besides the data of precipitation. The prediction model constructed only with multispectral image reflectance data can be considered as promising as the complete model in predicting TOC contents for the soils of a catchment area of the Caatinga, showing itself as a promising tool for TOC management in this biome. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-04-16T23:21:33Z 2018-04-16T23:21:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
LOURENÇO, Valéria Ramos. Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto. 2017. 61f. Monografia (Graduação em Agronomia)-Universidade Federal do Ceará, Fortaleza, 2017. http://www.repositorio.ufc.br/handle/riufc/31131 |
identifier_str_mv |
LOURENÇO, Valéria Ramos. Predição digital do carbono orgânico do solo no bioma Caatinga auxiliado por sensoriamento remoto. 2017. 61f. Monografia (Graduação em Agronomia)-Universidade Federal do Ceará, Fortaleza, 2017. |
url |
http://www.repositorio.ufc.br/handle/riufc/31131 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028948652589056 |