Plasmonic properties of metallic nanoparticle layers

Detalhes bibliográficos
Autor(a) principal: Vieira, Bruno Gondim de Melo
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/48274
Resumo: Agglomerates of metallic nanoparticles (NPs) are known for a long time to interact remarkably with light, which leads them to a wide range of applications, from high-resolution imaging to solar cells. The self-assembly technique has drawn attention lately as it allows the synthesis of very close-packed nanoparticle clusters with high parameters precision and relatively low cost. This thesis provides a thorough theoretical investigation of the optical properties of mono-, bi- and few-layers made of gold and silver nanoparticles, showing also crucial experimental results that solidly support the study. Finite-difference time-domain (FDTD) simulations predict the excitation of one bright plasmon mode at the monolayers and two plasmon modes at the bilayers, one bright and one dark mode, identified by the parallel and antiparallel induced dipoles between the layers, respectively. A plane linearly polarized incident wave with propagation normal to the film is used. The dark mode excitation is allowed by field retardation that becomes dominant when the size of the nanoparticles is sufficiently large. The spectral properties of the mode, such as resonance energy and linewidth, can be tuned by changing the nanoparticles sizes and their separation. The simulations predict also a high density of nearfield hotspots with intensity enhancement of up to 3000, which indicates that these materials are excellent for spectroscopy applications. Microabsorbance measurements on gold bi- and trilayers show the characteristic absorbance peak from the dark interlayer modes, confirming the simulation predictions. For other few-layers with higher layer numbers, new dark plasmon modes are excited and a standing wave behavior starts to emerge, in which most of the light gets passed through the material and is no longer absorbed. We investigate the possibility of employing the layers for hot-electron generation, providing both FDTD simulations and time-resolved transient absorption experiments. Furthermore, we observe that placing the layers onto a reflective surface leads to a tremendous increase in the optical absorption of the dark modes. All methods we used are very reproducible and the simulated results can be verified experimentally with a relatively simple setup. This study opens the way for many new explorations in both fundamental and applied research.
id UFC-7_62815ba7c0f2fa35cd22843d2860b59c
oai_identifier_str oai:repositorio.ufc.br:riufc/48274
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Plasmonic properties of metallic nanoparticle layersPlasmonic properties of metallic nanoparticle layersNanopartículasPlasmonDiferenças finitas no domínio do tempo (FDTD);Agglomerates of metallic nanoparticles (NPs) are known for a long time to interact remarkably with light, which leads them to a wide range of applications, from high-resolution imaging to solar cells. The self-assembly technique has drawn attention lately as it allows the synthesis of very close-packed nanoparticle clusters with high parameters precision and relatively low cost. This thesis provides a thorough theoretical investigation of the optical properties of mono-, bi- and few-layers made of gold and silver nanoparticles, showing also crucial experimental results that solidly support the study. Finite-difference time-domain (FDTD) simulations predict the excitation of one bright plasmon mode at the monolayers and two plasmon modes at the bilayers, one bright and one dark mode, identified by the parallel and antiparallel induced dipoles between the layers, respectively. A plane linearly polarized incident wave with propagation normal to the film is used. The dark mode excitation is allowed by field retardation that becomes dominant when the size of the nanoparticles is sufficiently large. The spectral properties of the mode, such as resonance energy and linewidth, can be tuned by changing the nanoparticles sizes and their separation. The simulations predict also a high density of nearfield hotspots with intensity enhancement of up to 3000, which indicates that these materials are excellent for spectroscopy applications. Microabsorbance measurements on gold bi- and trilayers show the characteristic absorbance peak from the dark interlayer modes, confirming the simulation predictions. For other few-layers with higher layer numbers, new dark plasmon modes are excited and a standing wave behavior starts to emerge, in which most of the light gets passed through the material and is no longer absorbed. We investigate the possibility of employing the layers for hot-electron generation, providing both FDTD simulations and time-resolved transient absorption experiments. Furthermore, we observe that placing the layers onto a reflective surface leads to a tremendous increase in the optical absorption of the dark modes. All methods we used are very reproducible and the simulated results can be verified experimentally with a relatively simple setup. This study opens the way for many new explorations in both fundamental and applied research.Os aglomerados de nanopartículas (NPs) metálicas são conhecidos há muito tempo por sua notável interação com a luz, o que os leva a uma vasta gama de aplicações, desde imagens de alta resolução até células solares. A técnica de automontagem (self-assembly) tem chamado atenção ultimamente, já que ela permite a síntese de aglomerados de nanopartículas altamente compactados com alta precisão de parâmetros e custo relativamente baixo. Esta tese fornece uma investigação teórica aprofundada das propriedades ópticas de mono-, bi- e poucas camadas feitas de nanopartículas de ouro e prata, em que se mostra também resultados experimentais cruciais ao embasamento sólido do estudo. Simulações com o método de diferenças finitas no domínio do tempo (FDTD) preveem a excitação de um modo de plasmon claro nas monocamadas e dois modos de plasmon nas bicamadas, um claro e um escuro, identificados pelos dipolos induzidos paralela e antiparalelamente entre as camadas, respectivamente. Nos cálculos, utilizou-se uma onda incidente linearmente polarizada com propagação normal ao filme. A excitação do modo escuro é permitida pelo efeito de retardo de campo, que se torna dominante quando o tamanho das nanopartículas é suficientemente grande. As propriedades espectrais do modo, tais como energia de ressonância e largura de linha, podem ser ajustadas alterando-se os tamanhos das nanopartículas e sua separação. As simulações preveem também uma alta densidade de hotspots com aumento de intensidade de campo próximo de até 3000, o que indica que esses materiais são excelentes para aplicações em espectroscopia. As medições de microabsorbância em bi- e tricamadas de ouro mostram o pico de absorbância característico dos modos escuros, confirmando as previsões da simulação. Para estruturas com um maior número de camadas, novos modos de plasmon escuros são excitados e um comportamento de onda estacionária começa a emergir, que faz com que a maior parte da luz passe pelo material e não seja mais absorvida. Investigou-se também a possibilidade de empregar esses materiais na geração de elétrons quentes (hot-electrons), em que se apresenta simulações de FDTD e experimentos de absorção transiente resolvidos no tempo. Além disso, observamos que a deposição das camadas em uma superfície refletora leva a um tremendo aumento na absorção óptica dos modos escuros. Vale ressaltar que todos os métodos utilizados são reprodutíveis e os resultados simulados podem ser verificados experimentalmente com uma aparelhagem relativamente simples. Esse estudo abre caminho para muitas novas explorações, tanto em pesquisa fundamental quanto em aplicada.Barros, Eduardo BedêVieira, Bruno Gondim de Melo2019-12-09T17:28:29Z2019-12-09T17:28:29Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfVIEIRA, B. G. M. Plasmonic properties of metallic nanoparticle layers. 78 f. Tese (Doutorado em Física) - Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/48274engreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-10-22T22:00:57Zoai:repositorio.ufc.br:riufc/48274Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:21:03.995990Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Plasmonic properties of metallic nanoparticle layers
Plasmonic properties of metallic nanoparticle layers
title Plasmonic properties of metallic nanoparticle layers
spellingShingle Plasmonic properties of metallic nanoparticle layers
Vieira, Bruno Gondim de Melo
Nanopartículas
Plasmon
Diferenças finitas no domínio do tempo (FDTD);
title_short Plasmonic properties of metallic nanoparticle layers
title_full Plasmonic properties of metallic nanoparticle layers
title_fullStr Plasmonic properties of metallic nanoparticle layers
title_full_unstemmed Plasmonic properties of metallic nanoparticle layers
title_sort Plasmonic properties of metallic nanoparticle layers
author Vieira, Bruno Gondim de Melo
author_facet Vieira, Bruno Gondim de Melo
author_role author
dc.contributor.none.fl_str_mv Barros, Eduardo Bedê
dc.contributor.author.fl_str_mv Vieira, Bruno Gondim de Melo
dc.subject.por.fl_str_mv Nanopartículas
Plasmon
Diferenças finitas no domínio do tempo (FDTD);
topic Nanopartículas
Plasmon
Diferenças finitas no domínio do tempo (FDTD);
description Agglomerates of metallic nanoparticles (NPs) are known for a long time to interact remarkably with light, which leads them to a wide range of applications, from high-resolution imaging to solar cells. The self-assembly technique has drawn attention lately as it allows the synthesis of very close-packed nanoparticle clusters with high parameters precision and relatively low cost. This thesis provides a thorough theoretical investigation of the optical properties of mono-, bi- and few-layers made of gold and silver nanoparticles, showing also crucial experimental results that solidly support the study. Finite-difference time-domain (FDTD) simulations predict the excitation of one bright plasmon mode at the monolayers and two plasmon modes at the bilayers, one bright and one dark mode, identified by the parallel and antiparallel induced dipoles between the layers, respectively. A plane linearly polarized incident wave with propagation normal to the film is used. The dark mode excitation is allowed by field retardation that becomes dominant when the size of the nanoparticles is sufficiently large. The spectral properties of the mode, such as resonance energy and linewidth, can be tuned by changing the nanoparticles sizes and their separation. The simulations predict also a high density of nearfield hotspots with intensity enhancement of up to 3000, which indicates that these materials are excellent for spectroscopy applications. Microabsorbance measurements on gold bi- and trilayers show the characteristic absorbance peak from the dark interlayer modes, confirming the simulation predictions. For other few-layers with higher layer numbers, new dark plasmon modes are excited and a standing wave behavior starts to emerge, in which most of the light gets passed through the material and is no longer absorbed. We investigate the possibility of employing the layers for hot-electron generation, providing both FDTD simulations and time-resolved transient absorption experiments. Furthermore, we observe that placing the layers onto a reflective surface leads to a tremendous increase in the optical absorption of the dark modes. All methods we used are very reproducible and the simulated results can be verified experimentally with a relatively simple setup. This study opens the way for many new explorations in both fundamental and applied research.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-09T17:28:29Z
2019-12-09T17:28:29Z
2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv VIEIRA, B. G. M. Plasmonic properties of metallic nanoparticle layers. 78 f. Tese (Doutorado em Física) - Universidade Federal do Ceará, Fortaleza, 2019.
http://www.repositorio.ufc.br/handle/riufc/48274
identifier_str_mv VIEIRA, B. G. M. Plasmonic properties of metallic nanoparticle layers. 78 f. Tese (Doutorado em Física) - Universidade Federal do Ceará, Fortaleza, 2019.
url http://www.repositorio.ufc.br/handle/riufc/48274
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028766922833920