Homologia métrica

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Tiago Caúla
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/964
Resumo: In this paper we develop and apply the theory of homology metric, created by Jean Paul Brasselet and Lev Birbrair. Each set semialgébrico X associate a collection of real vector spaces (or abelian groups) ^ {MH_k ν (X)} _ {k} є Z so that it is given another semialgébrico X 'semialgebricamente which is bi-Lipschitz equivalent to X, then ν MH_k ^ (X) is isomorphic to MH_k ν ^ (X ') for all k. Thus, the collection {^ MH_k ν (X)} carries some information metric semialgébrico X. In particular, we have necessary conditions for an isolated singularity x_0 belonging to X is conical. More precisely, given a submanifold compact L of a sphere S_ {x_0, r}, we compute the groups MH_k ^ ν (x_0 * L) in terms of singular homology of L, where x_0 * L denotes the cone {tx_0 + (1-t ) x, x belonging to L, t belonging to [0,1]}. Allied to the metric we have the homology cycles Chegger, geometric objects that obstruct the nature of a conical singularity. As an application of the theory, we present a class of complex surfaces whose singularities (isolated) are non-tapered.
id UFC-7_652beec22156db3ba2b344aff0ee0937
oai_identifier_str oai:repositorio.ufc.br:riufc/964
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Homologia métricaMetric homologySingularidadesEspaços vetoriaisGrupos abelianosTopologia algébricaIn this paper we develop and apply the theory of homology metric, created by Jean Paul Brasselet and Lev Birbrair. Each set semialgébrico X associate a collection of real vector spaces (or abelian groups) ^ {MH_k ν (X)} _ {k} є Z so that it is given another semialgébrico X 'semialgebricamente which is bi-Lipschitz equivalent to X, then ν MH_k ^ (X) is isomorphic to MH_k ν ^ (X ') for all k. Thus, the collection {^ MH_k ν (X)} carries some information metric semialgébrico X. In particular, we have necessary conditions for an isolated singularity x_0 belonging to X is conical. More precisely, given a submanifold compact L of a sphere S_ {x_0, r}, we compute the groups MH_k ^ ν (x_0 * L) in terms of singular homology of L, where x_0 * L denotes the cone {tx_0 + (1-t ) x, x belonging to L, t belonging to [0,1]}. Allied to the metric we have the homology cycles Chegger, geometric objects that obstruct the nature of a conical singularity. As an application of the theory, we present a class of complex surfaces whose singularities (isolated) are non-tapered.No presente trabalho desenvolvemos e aplicamos a teoria de homologia métrica, criada por Jean Paul Brasselet e Lev Birbrair. A cada conjunto semialgébrico X associamos uma coleção de espaços vetoriais reais (ou grupos abelianos) {MH_k^ν(X)} _{k є Z} de forma que se é dado um outro semialgébrico X' que é semialgebricamente bi-Lipschitz equivalente a X, então MH_k^ν(X) é isomorfo a MH_k^ν(X') para todo k. Assim, a coleção {MH_k^ν(X)} carrega alguma informação métrica do semialgébrico X. Em particular, teremos condições necessárias para que uma singularidade isolada x_0 pertencente a X seja cônica. Mais precisamente, dada uma subvariedade compacta L de uma esfera S_{x_0,r}, calculamos os grupos MH_k^ν(x_0*L) em termos da homologia singular de L, onde x_0*L denota o cone {tx_0+(1-t)x ; x pertencente a L, t pertencente a [0,1]}. Aliado à homologia métrica temos os Ciclos de Chegger, objetos geométricos que obstruem a natureza cônica de uma singularidade. Como uma aplicação da teoria, apresentamos uma classe de superfícies complexas cujas singularidades (isoladas) são não-cônicas.Fernandes, Alexandre César GurgelRibeiro, Tiago Caúla2011-10-28T13:22:48Z2011-10-28T13:22:48Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfRIBEIRO, Tiago Caúla. Homologia métrica. 2007. 38 f. : Dissertação (mestrado)- Universidade Federal do Ceará, Pós-Graduação em Matemática, Fortaleza-CE, 2007.http://www.repositorio.ufc.br/handle/riufc/964porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-01-08T15:52:04Zoai:repositorio.ufc.br:riufc/964Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:50:37.987385Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Homologia métrica
Metric homology
title Homologia métrica
spellingShingle Homologia métrica
Ribeiro, Tiago Caúla
Singularidades
Espaços vetoriais
Grupos abelianos
Topologia algébrica
title_short Homologia métrica
title_full Homologia métrica
title_fullStr Homologia métrica
title_full_unstemmed Homologia métrica
title_sort Homologia métrica
author Ribeiro, Tiago Caúla
author_facet Ribeiro, Tiago Caúla
author_role author
dc.contributor.none.fl_str_mv Fernandes, Alexandre César Gurgel
dc.contributor.author.fl_str_mv Ribeiro, Tiago Caúla
dc.subject.por.fl_str_mv Singularidades
Espaços vetoriais
Grupos abelianos
Topologia algébrica
topic Singularidades
Espaços vetoriais
Grupos abelianos
Topologia algébrica
description In this paper we develop and apply the theory of homology metric, created by Jean Paul Brasselet and Lev Birbrair. Each set semialgébrico X associate a collection of real vector spaces (or abelian groups) ^ {MH_k ν (X)} _ {k} є Z so that it is given another semialgébrico X 'semialgebricamente which is bi-Lipschitz equivalent to X, then ν MH_k ^ (X) is isomorphic to MH_k ν ^ (X ') for all k. Thus, the collection {^ MH_k ν (X)} carries some information metric semialgébrico X. In particular, we have necessary conditions for an isolated singularity x_0 belonging to X is conical. More precisely, given a submanifold compact L of a sphere S_ {x_0, r}, we compute the groups MH_k ^ ν (x_0 * L) in terms of singular homology of L, where x_0 * L denotes the cone {tx_0 + (1-t ) x, x belonging to L, t belonging to [0,1]}. Allied to the metric we have the homology cycles Chegger, geometric objects that obstruct the nature of a conical singularity. As an application of the theory, we present a class of complex surfaces whose singularities (isolated) are non-tapered.
publishDate 2007
dc.date.none.fl_str_mv 2007
2011-10-28T13:22:48Z
2011-10-28T13:22:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv RIBEIRO, Tiago Caúla. Homologia métrica. 2007. 38 f. : Dissertação (mestrado)- Universidade Federal do Ceará, Pós-Graduação em Matemática, Fortaleza-CE, 2007.
http://www.repositorio.ufc.br/handle/riufc/964
identifier_str_mv RIBEIRO, Tiago Caúla. Homologia métrica. 2007. 38 f. : Dissertação (mestrado)- Universidade Federal do Ceará, Pós-Graduação em Matemática, Fortaleza-CE, 2007.
url http://www.repositorio.ufc.br/handle/riufc/964
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028967692632064