RocketDRL: a novel 3d environment for training reinforcement learning agents

Detalhes bibliográficos
Autor(a) principal: Farrapo, Hyuan Peixoto
Data de Publicação: 2021
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/68988
Resumo: The development of autonomous agents capable of presenting more human-like behavior is currently driven by Deep Reinforcement Learning techniques. Deep Reinforcement Learning is an active field of research that is fueled by virtual environments usually inspired or borrowed from video games. Several works in the field are limited to playing classical control tasks, 2D environments, or outdated games. Therefore, most environments used in research are significantly different from those available in current trending 3D games. This paper introduces RocketDRL, a novel Deep Reinforcement Learning environment which supports mechanics for 3D games inspired by the popular “car football” game Rocket League. Besides the classical gameplay, we implemented three challenging minigames based on the mechanics from this title with an advanced simulation of physics with fine-grained car control: penalty shoot, free kick, and aerial shoot. Moreover, we also provide promising baseline results using Unity’s ML-Agents Toolkit, which is an easy way to train and evaluate the agents.
id UFC-7_848baa997c8fde89f486a0bdd83c5c2c
oai_identifier_str oai:repositorio.ufc.br:riufc/68988
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling RocketDRL: a novel 3d environment for training reinforcement learning agentsVirtual environmentsAutonomous agentsReinforcement learningSimulationThe development of autonomous agents capable of presenting more human-like behavior is currently driven by Deep Reinforcement Learning techniques. Deep Reinforcement Learning is an active field of research that is fueled by virtual environments usually inspired or borrowed from video games. Several works in the field are limited to playing classical control tasks, 2D environments, or outdated games. Therefore, most environments used in research are significantly different from those available in current trending 3D games. This paper introduces RocketDRL, a novel Deep Reinforcement Learning environment which supports mechanics for 3D games inspired by the popular “car football” game Rocket League. Besides the classical gameplay, we implemented three challenging minigames based on the mechanics from this title with an advanced simulation of physics with fine-grained car control: penalty shoot, free kick, and aerial shoot. Moreover, we also provide promising baseline results using Unity’s ML-Agents Toolkit, which is an easy way to train and evaluate the agents.O desenvolvimento de agentes autônomos capazes de apresentar um comportamento mais humano é atualmente impulsionado por técnicas de Deep Reinforcement Learning. Deep Reinforcement Learning é um campo de pesquisa ativo que é alimentado por ambientes virtuais geralmente inspirados ou emprestados de videogames. Vários trabalhos na área se limitam a jogar tarefas clássicas de controle, ambientes 2D ou jogos desatualizados. Portanto, a maioria dos ambientes usados ​​na pesquisa são significativamente diferentes daqueles disponíveis nos jogos 3D atuais. Este artigo apresenta o RocketDRL, um novo ambiente de Deep Reinforcement Learning que suporta mecânicas para jogos 3D inspirados no popular jogo de “futebol de carros” Rocket League. Além da jogabilidade clássica, implementamos três minijogos desafiadores baseados na mecânica deste título com uma simulação avançada de física com controle de carro refinado: pênaltis, chute livre e tiro aéreo. Além disso, também fornecemos resultados de linha de base promissores usando o ML-Agents Toolkit da Unity, que é uma maneira fácil de treinar e avaliar os agentes.Maia, José Gilvan RodriguesFarrapo, Hyuan Peixoto2022-10-26T18:01:46Z2022-10-26T18:01:46Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfFARRAPO, Hyuan Peixoto. RocketDRL: a novel 3d environment for training reinforcement learning agents. 2021. 9 f. TCC (Graduação em Sistemas e Mídias Digitais) - Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/68988porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-10-26T18:01:47Zoai:repositorio.ufc.br:riufc/68988Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:18:10.236477Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv RocketDRL: a novel 3d environment for training reinforcement learning agents
title RocketDRL: a novel 3d environment for training reinforcement learning agents
spellingShingle RocketDRL: a novel 3d environment for training reinforcement learning agents
Farrapo, Hyuan Peixoto
Virtual environments
Autonomous agents
Reinforcement learning
Simulation
title_short RocketDRL: a novel 3d environment for training reinforcement learning agents
title_full RocketDRL: a novel 3d environment for training reinforcement learning agents
title_fullStr RocketDRL: a novel 3d environment for training reinforcement learning agents
title_full_unstemmed RocketDRL: a novel 3d environment for training reinforcement learning agents
title_sort RocketDRL: a novel 3d environment for training reinforcement learning agents
author Farrapo, Hyuan Peixoto
author_facet Farrapo, Hyuan Peixoto
author_role author
dc.contributor.none.fl_str_mv Maia, José Gilvan Rodrigues
dc.contributor.author.fl_str_mv Farrapo, Hyuan Peixoto
dc.subject.por.fl_str_mv Virtual environments
Autonomous agents
Reinforcement learning
Simulation
topic Virtual environments
Autonomous agents
Reinforcement learning
Simulation
description The development of autonomous agents capable of presenting more human-like behavior is currently driven by Deep Reinforcement Learning techniques. Deep Reinforcement Learning is an active field of research that is fueled by virtual environments usually inspired or borrowed from video games. Several works in the field are limited to playing classical control tasks, 2D environments, or outdated games. Therefore, most environments used in research are significantly different from those available in current trending 3D games. This paper introduces RocketDRL, a novel Deep Reinforcement Learning environment which supports mechanics for 3D games inspired by the popular “car football” game Rocket League. Besides the classical gameplay, we implemented three challenging minigames based on the mechanics from this title with an advanced simulation of physics with fine-grained car control: penalty shoot, free kick, and aerial shoot. Moreover, we also provide promising baseline results using Unity’s ML-Agents Toolkit, which is an easy way to train and evaluate the agents.
publishDate 2021
dc.date.none.fl_str_mv 2021
2022-10-26T18:01:46Z
2022-10-26T18:01:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FARRAPO, Hyuan Peixoto. RocketDRL: a novel 3d environment for training reinforcement learning agents. 2021. 9 f. TCC (Graduação em Sistemas e Mídias Digitais) - Universidade Federal do Ceará, Fortaleza, 2021.
http://www.repositorio.ufc.br/handle/riufc/68988
identifier_str_mv FARRAPO, Hyuan Peixoto. RocketDRL: a novel 3d environment for training reinforcement learning agents. 2021. 9 f. TCC (Graduação em Sistemas e Mídias Digitais) - Universidade Federal do Ceará, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/68988
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028745373548544