Impact of higher-order statistics on adaptive algorithms for blind source separation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/69699 |
Resumo: | The paper is devoted to present an analysis of the impact of higher order statistics (HOS) in adaptive blind source separation criteria. Despite the well known fact that they are necessary to provide source separation in a general framework, their impact on the performance of adaptive solutions is a still open research field. The approach of probability density function (pdf) recovering is used. In order to verify the analysis, two constrained adaptive algorithms are investigated. Namely, the multiuser kurtosis algorithm (MUK) and the multiuser constrained fitting probability density function algorithm (MU-CFPA) are used due to the desired characteristics of different HOS involved in their design. Simulation results are carried out to basis our analysis. |
id |
UFC-7_b1695c8020fb81594a2fc7a663ac4269 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/69699 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Impact of higher-order statistics on adaptive algorithms for blind source separationProcessamento de sinaisSeparação cega de fontesThe paper is devoted to present an analysis of the impact of higher order statistics (HOS) in adaptive blind source separation criteria. Despite the well known fact that they are necessary to provide source separation in a general framework, their impact on the performance of adaptive solutions is a still open research field. The approach of probability density function (pdf) recovering is used. In order to verify the analysis, two constrained adaptive algorithms are investigated. Namely, the multiuser kurtosis algorithm (MUK) and the multiuser constrained fitting probability density function algorithm (MU-CFPA) are used due to the desired characteristics of different HOS involved in their design. Simulation results are carried out to basis our analysis.Workshop on Signal Processing Advances in Wireless Communications2022-12-12T14:03:45Z2022-12-12T14:03:45Z2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfCAVALCANTE, C. C.; ROMANO, J .M. T. Impact of higher-order statistics on adaptive algorithms for blind source separation. In: WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 5., 2004, Lisboa. Anais... Lisboa: IEEE, 2004. p. 170-174.http://www.repositorio.ufc.br/handle/riufc/69699Cavalcante, Charles CasimiroRomano, João Marcos Travassosengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-12-12T14:03:45Zoai:repositorio.ufc.br:riufc/69699Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T19:01:31.838262Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Impact of higher-order statistics on adaptive algorithms for blind source separation |
title |
Impact of higher-order statistics on adaptive algorithms for blind source separation |
spellingShingle |
Impact of higher-order statistics on adaptive algorithms for blind source separation Cavalcante, Charles Casimiro Processamento de sinais Separação cega de fontes |
title_short |
Impact of higher-order statistics on adaptive algorithms for blind source separation |
title_full |
Impact of higher-order statistics on adaptive algorithms for blind source separation |
title_fullStr |
Impact of higher-order statistics on adaptive algorithms for blind source separation |
title_full_unstemmed |
Impact of higher-order statistics on adaptive algorithms for blind source separation |
title_sort |
Impact of higher-order statistics on adaptive algorithms for blind source separation |
author |
Cavalcante, Charles Casimiro |
author_facet |
Cavalcante, Charles Casimiro Romano, João Marcos Travassos |
author_role |
author |
author2 |
Romano, João Marcos Travassos |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cavalcante, Charles Casimiro Romano, João Marcos Travassos |
dc.subject.por.fl_str_mv |
Processamento de sinais Separação cega de fontes |
topic |
Processamento de sinais Separação cega de fontes |
description |
The paper is devoted to present an analysis of the impact of higher order statistics (HOS) in adaptive blind source separation criteria. Despite the well known fact that they are necessary to provide source separation in a general framework, their impact on the performance of adaptive solutions is a still open research field. The approach of probability density function (pdf) recovering is used. In order to verify the analysis, two constrained adaptive algorithms are investigated. Namely, the multiuser kurtosis algorithm (MUK) and the multiuser constrained fitting probability density function algorithm (MU-CFPA) are used due to the desired characteristics of different HOS involved in their design. Simulation results are carried out to basis our analysis. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 2022-12-12T14:03:45Z 2022-12-12T14:03:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CAVALCANTE, C. C.; ROMANO, J .M. T. Impact of higher-order statistics on adaptive algorithms for blind source separation. In: WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 5., 2004, Lisboa. Anais... Lisboa: IEEE, 2004. p. 170-174. http://www.repositorio.ufc.br/handle/riufc/69699 |
identifier_str_mv |
CAVALCANTE, C. C.; ROMANO, J .M. T. Impact of higher-order statistics on adaptive algorithms for blind source separation. In: WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 5., 2004, Lisboa. Anais... Lisboa: IEEE, 2004. p. 170-174. |
url |
http://www.repositorio.ufc.br/handle/riufc/69699 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Workshop on Signal Processing Advances in Wireless Communications |
publisher.none.fl_str_mv |
Workshop on Signal Processing Advances in Wireless Communications |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813029037524647936 |