A neural predictor for blind equalization of digital communication systems: is it plausible?

Detalhes bibliográficos
Autor(a) principal: Cavalcante, Charles Casimiro
Data de Publicação: 2000
Outros Autores: Montalvao Filho, Jugurta Rosa, Dorizzi, Bernadette, Mota, João César Moura
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/69589
Resumo: In digital channel equalization, self-learning techniques are used in the cases where a training period is not available. Considering the transmitted sequence as composed of independent random variables, the equalization task can be done by means of prediction. In this work we propose artificial neural networks (ANN), instead of a linear prediction device, in order to obtain a better performance and analyse its performance and applicability. Linear and nonlinear prediction concepts are revisited and a new self-organized algorithm is proposed to update the first layer in the nonlinear predictor whose aim is to avoid local minimum points in the applied cost function. The second layer is updated by using a classical supervised algorithm based on prediction error. Simulation results are presented which illustrate the performance of this technique.
id UFC-7_cb1b7b01751718a9b89870c99babd7f7
oai_identifier_str oai:repositorio.ufc.br:riufc/69589
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling A neural predictor for blind equalization of digital communication systems: is it plausible?In digital channel equalization, self-learning techniques are used in the cases where a training period is not available. Considering the transmitted sequence as composed of independent random variables, the equalization task can be done by means of prediction. In this work we propose artificial neural networks (ANN), instead of a linear prediction device, in order to obtain a better performance and analyse its performance and applicability. Linear and nonlinear prediction concepts are revisited and a new self-organized algorithm is proposed to update the first layer in the nonlinear predictor whose aim is to avoid local minimum points in the applied cost function. The second layer is updated by using a classical supervised algorithm based on prediction error. Simulation results are presented which illustrate the performance of this technique.Signal Processing Society Workshop2022-11-29T13:36:08Z2022-11-29T13:36:08Z2000info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfCAVALCANTE, C. C. et al. A neural predictor for blind equalization of digital communication systems: is it plausible? In: SIGNAL PROCESSING SOCIETY WORKSHOP, 2000, Sydney. Anais... Sydney: IEEE, 2000. p. 736-745.http://www.repositorio.ufc.br/handle/riufc/69589Cavalcante, Charles CasimiroMontalvao Filho, Jugurta RosaDorizzi, BernadetteMota, João César Mouraengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-11-29T13:36:08Zoai:repositorio.ufc.br:riufc/69589Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T19:03:31.529141Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv A neural predictor for blind equalization of digital communication systems: is it plausible?
title A neural predictor for blind equalization of digital communication systems: is it plausible?
spellingShingle A neural predictor for blind equalization of digital communication systems: is it plausible?
Cavalcante, Charles Casimiro
title_short A neural predictor for blind equalization of digital communication systems: is it plausible?
title_full A neural predictor for blind equalization of digital communication systems: is it plausible?
title_fullStr A neural predictor for blind equalization of digital communication systems: is it plausible?
title_full_unstemmed A neural predictor for blind equalization of digital communication systems: is it plausible?
title_sort A neural predictor for blind equalization of digital communication systems: is it plausible?
author Cavalcante, Charles Casimiro
author_facet Cavalcante, Charles Casimiro
Montalvao Filho, Jugurta Rosa
Dorizzi, Bernadette
Mota, João César Moura
author_role author
author2 Montalvao Filho, Jugurta Rosa
Dorizzi, Bernadette
Mota, João César Moura
author2_role author
author
author
dc.contributor.author.fl_str_mv Cavalcante, Charles Casimiro
Montalvao Filho, Jugurta Rosa
Dorizzi, Bernadette
Mota, João César Moura
description In digital channel equalization, self-learning techniques are used in the cases where a training period is not available. Considering the transmitted sequence as composed of independent random variables, the equalization task can be done by means of prediction. In this work we propose artificial neural networks (ANN), instead of a linear prediction device, in order to obtain a better performance and analyse its performance and applicability. Linear and nonlinear prediction concepts are revisited and a new self-organized algorithm is proposed to update the first layer in the nonlinear predictor whose aim is to avoid local minimum points in the applied cost function. The second layer is updated by using a classical supervised algorithm based on prediction error. Simulation results are presented which illustrate the performance of this technique.
publishDate 2000
dc.date.none.fl_str_mv 2000
2022-11-29T13:36:08Z
2022-11-29T13:36:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv CAVALCANTE, C. C. et al. A neural predictor for blind equalization of digital communication systems: is it plausible? In: SIGNAL PROCESSING SOCIETY WORKSHOP, 2000, Sydney. Anais... Sydney: IEEE, 2000. p. 736-745.
http://www.repositorio.ufc.br/handle/riufc/69589
identifier_str_mv CAVALCANTE, C. C. et al. A neural predictor for blind equalization of digital communication systems: is it plausible? In: SIGNAL PROCESSING SOCIETY WORKSHOP, 2000, Sydney. Anais... Sydney: IEEE, 2000. p. 736-745.
url http://www.repositorio.ufc.br/handle/riufc/69589
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Signal Processing Society Workshop
publisher.none.fl_str_mv Signal Processing Society Workshop
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813029050072956928