Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/4068 |
Resumo: | The most important task in the ECG signal processing is the accurate determina-tion of QRS complex, in particular, accurate detection of the R wave peaks, is essential in computer-based ECG analysis especially for a correct measurement of Heart Rate Variability (HRV). A great hurdle to be overcome in reliable detection is the sensibility of the electrocar-diogram to several disturbance sources such as powering source interference, movement arti-facts, baseline wandering and muscle noise. This study uses the Hilbert Transform pairs of wavelet bases for QRS detection. From the properties of these mathematical tools it was pos-sible to develop an algorithm which is able to differentiate the R waves from the others (P, Q, S, T and U waves).The performance of the algorithm was verified using the records MIT-BIH arrhythmia and normal databases. A QRS detection rate of 99.92% was achieved against MIT-BIH arrhythmia database. The noise tolerance of the proposed method was also tested using standard records from the MIT-BIH Noise Stress Test Database. The detection rate of the detector remains about 99.35% even for signal-to-noise ratios (SNR) as low as 6dB. |
id |
UFC-7_d13f660822083ba627190a00cb143664 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/4068 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRSA new approach to the QRS detection based on Hilbert transform and wavelet basesTeleinformáticaProcessamento de sinaisEletrocardiografiaThe most important task in the ECG signal processing is the accurate determina-tion of QRS complex, in particular, accurate detection of the R wave peaks, is essential in computer-based ECG analysis especially for a correct measurement of Heart Rate Variability (HRV). A great hurdle to be overcome in reliable detection is the sensibility of the electrocar-diogram to several disturbance sources such as powering source interference, movement arti-facts, baseline wandering and muscle noise. This study uses the Hilbert Transform pairs of wavelet bases for QRS detection. From the properties of these mathematical tools it was pos-sible to develop an algorithm which is able to differentiate the R waves from the others (P, Q, S, T and U waves).The performance of the algorithm was verified using the records MIT-BIH arrhythmia and normal databases. A QRS detection rate of 99.92% was achieved against MIT-BIH arrhythmia database. The noise tolerance of the proposed method was also tested using standard records from the MIT-BIH Noise Stress Test Database. The detection rate of the detector remains about 99.35% even for signal-to-noise ratios (SNR) as low as 6dB.A tarefa mais importante em processamento de sinais de eletrocardiograma (ECG) é a determinação exata do complexo de QRS, em particular, a detecção dos picos de onda R através de sistemas e análises computadorizadas. É essencial, especialmente, para uma medida correta da variabilidade do ritmo cardíaco (HRV). Um grande obstáculo a ser superado para uma detecção confiável é a sensibilidade do eletrocardiograma a diversas fontes de distúrbio, tais como, a interferência à rede elétrica, os artefatos do movimento, flutuação da linha base e o ruído dos músculos. Este trabalho utiliza as propriedades matemáticas da transformação de Hilbert sobre wavelets para desenvolver um novo algoritmo capaz de diferenciar as ondas R das demais (P, Q, S, T e U) e facilitar a detecção dos complexos QRS. Uma taxa de detecção do complexo QRS de 99,92% é alcançada para a base de dados de arritmias do MIT-BIH. A tolerância a ruído do método proposto foi também testada usando os registros padrão da base de dados MIT-BIH Noise Stress Test. A taxa da detecção do detector ficou aproximadamente 99,35% mesmo para as relações sinal-ruído (SNR) tão baixo quanto 6dB.Cortez, Paulo CésarOliveira, Francisco Ivan de2012-11-23T13:49:14Z2012-11-23T13:49:14Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOLIVEIRA, F. I. de. Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS. 2007. 210 f. Dissertação (Mestrado em Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007.http://www.repositorio.ufc.br/handle/riufc/4068porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-08-24T16:11:58Zoai:repositorio.ufc.br:riufc/4068Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:53:40.850245Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS A new approach to the QRS detection based on Hilbert transform and wavelet bases |
title |
Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS |
spellingShingle |
Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS Oliveira, Francisco Ivan de Teleinformática Processamento de sinais Eletrocardiografia |
title_short |
Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS |
title_full |
Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS |
title_fullStr |
Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS |
title_full_unstemmed |
Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS |
title_sort |
Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS |
author |
Oliveira, Francisco Ivan de |
author_facet |
Oliveira, Francisco Ivan de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cortez, Paulo César |
dc.contributor.author.fl_str_mv |
Oliveira, Francisco Ivan de |
dc.subject.por.fl_str_mv |
Teleinformática Processamento de sinais Eletrocardiografia |
topic |
Teleinformática Processamento de sinais Eletrocardiografia |
description |
The most important task in the ECG signal processing is the accurate determina-tion of QRS complex, in particular, accurate detection of the R wave peaks, is essential in computer-based ECG analysis especially for a correct measurement of Heart Rate Variability (HRV). A great hurdle to be overcome in reliable detection is the sensibility of the electrocar-diogram to several disturbance sources such as powering source interference, movement arti-facts, baseline wandering and muscle noise. This study uses the Hilbert Transform pairs of wavelet bases for QRS detection. From the properties of these mathematical tools it was pos-sible to develop an algorithm which is able to differentiate the R waves from the others (P, Q, S, T and U waves).The performance of the algorithm was verified using the records MIT-BIH arrhythmia and normal databases. A QRS detection rate of 99.92% was achieved against MIT-BIH arrhythmia database. The noise tolerance of the proposed method was also tested using standard records from the MIT-BIH Noise Stress Test Database. The detection rate of the detector remains about 99.35% even for signal-to-noise ratios (SNR) as low as 6dB. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2012-11-23T13:49:14Z 2012-11-23T13:49:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
OLIVEIRA, F. I. de. Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS. 2007. 210 f. Dissertação (Mestrado em Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007. http://www.repositorio.ufc.br/handle/riufc/4068 |
identifier_str_mv |
OLIVEIRA, F. I. de. Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS. 2007. 210 f. Dissertação (Mestrado em Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007. |
url |
http://www.repositorio.ufc.br/handle/riufc/4068 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028987139522560 |