Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS

Detalhes bibliográficos
Autor(a) principal: Oliveira, Francisco Ivan de
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/4068
Resumo: The most important task in the ECG signal processing is the accurate determina-tion of QRS complex, in particular, accurate detection of the R wave peaks, is essential in computer-based ECG analysis especially for a correct measurement of Heart Rate Variability (HRV). A great hurdle to be overcome in reliable detection is the sensibility of the electrocar-diogram to several disturbance sources such as powering source interference, movement arti-facts, baseline wandering and muscle noise. This study uses the Hilbert Transform pairs of wavelet bases for QRS detection. From the properties of these mathematical tools it was pos-sible to develop an algorithm which is able to differentiate the R waves from the others (P, Q, S, T and U waves).The performance of the algorithm was verified using the records MIT-BIH arrhythmia and normal databases. A QRS detection rate of 99.92% was achieved against MIT-BIH arrhythmia database. The noise tolerance of the proposed method was also tested using standard records from the MIT-BIH Noise Stress Test Database. The detection rate of the detector remains about 99.35% even for signal-to-noise ratios (SNR) as low as 6dB.
id UFC-7_d13f660822083ba627190a00cb143664
oai_identifier_str oai:repositorio.ufc.br:riufc/4068
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRSA new approach to the QRS detection based on Hilbert transform and wavelet basesTeleinformáticaProcessamento de sinaisEletrocardiografiaThe most important task in the ECG signal processing is the accurate determina-tion of QRS complex, in particular, accurate detection of the R wave peaks, is essential in computer-based ECG analysis especially for a correct measurement of Heart Rate Variability (HRV). A great hurdle to be overcome in reliable detection is the sensibility of the electrocar-diogram to several disturbance sources such as powering source interference, movement arti-facts, baseline wandering and muscle noise. This study uses the Hilbert Transform pairs of wavelet bases for QRS detection. From the properties of these mathematical tools it was pos-sible to develop an algorithm which is able to differentiate the R waves from the others (P, Q, S, T and U waves).The performance of the algorithm was verified using the records MIT-BIH arrhythmia and normal databases. A QRS detection rate of 99.92% was achieved against MIT-BIH arrhythmia database. The noise tolerance of the proposed method was also tested using standard records from the MIT-BIH Noise Stress Test Database. The detection rate of the detector remains about 99.35% even for signal-to-noise ratios (SNR) as low as 6dB.A tarefa mais importante em processamento de sinais de eletrocardiograma (ECG) é a determinação exata do complexo de QRS, em particular, a detecção dos picos de onda R através de sistemas e análises computadorizadas. É essencial, especialmente, para uma medida correta da variabilidade do ritmo cardíaco (HRV). Um grande obstáculo a ser superado para uma detecção confiável é a sensibilidade do eletrocardiograma a diversas fontes de distúrbio, tais como, a interferência à rede elétrica, os artefatos do movimento, flutuação da linha base e o ruído dos músculos. Este trabalho utiliza as propriedades matemáticas da transformação de Hilbert sobre wavelets para desenvolver um novo algoritmo capaz de diferenciar as ondas R das demais (P, Q, S, T e U) e facilitar a detecção dos complexos QRS. Uma taxa de detecção do complexo QRS de 99,92% é alcançada para a base de dados de arritmias do MIT-BIH. A tolerância a ruído do método proposto foi também testada usando os registros padrão da base de dados MIT-BIH Noise Stress Test. A taxa da detecção do detector ficou aproximadamente 99,35% mesmo para as relações sinal-ruído (SNR) tão baixo quanto 6dB.Cortez, Paulo CésarOliveira, Francisco Ivan de2012-11-23T13:49:14Z2012-11-23T13:49:14Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOLIVEIRA, F. I. de. Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS. 2007. 210 f. Dissertação (Mestrado em Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007.http://www.repositorio.ufc.br/handle/riufc/4068porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-08-24T16:11:58Zoai:repositorio.ufc.br:riufc/4068Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:53:40.850245Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS
A new approach to the QRS detection based on Hilbert transform and wavelet bases
title Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS
spellingShingle Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS
Oliveira, Francisco Ivan de
Teleinformática
Processamento de sinais
Eletrocardiografia
title_short Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS
title_full Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS
title_fullStr Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS
title_full_unstemmed Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS
title_sort Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS
author Oliveira, Francisco Ivan de
author_facet Oliveira, Francisco Ivan de
author_role author
dc.contributor.none.fl_str_mv Cortez, Paulo César
dc.contributor.author.fl_str_mv Oliveira, Francisco Ivan de
dc.subject.por.fl_str_mv Teleinformática
Processamento de sinais
Eletrocardiografia
topic Teleinformática
Processamento de sinais
Eletrocardiografia
description The most important task in the ECG signal processing is the accurate determina-tion of QRS complex, in particular, accurate detection of the R wave peaks, is essential in computer-based ECG analysis especially for a correct measurement of Heart Rate Variability (HRV). A great hurdle to be overcome in reliable detection is the sensibility of the electrocar-diogram to several disturbance sources such as powering source interference, movement arti-facts, baseline wandering and muscle noise. This study uses the Hilbert Transform pairs of wavelet bases for QRS detection. From the properties of these mathematical tools it was pos-sible to develop an algorithm which is able to differentiate the R waves from the others (P, Q, S, T and U waves).The performance of the algorithm was verified using the records MIT-BIH arrhythmia and normal databases. A QRS detection rate of 99.92% was achieved against MIT-BIH arrhythmia database. The noise tolerance of the proposed method was also tested using standard records from the MIT-BIH Noise Stress Test Database. The detection rate of the detector remains about 99.35% even for signal-to-noise ratios (SNR) as low as 6dB.
publishDate 2007
dc.date.none.fl_str_mv 2007
2012-11-23T13:49:14Z
2012-11-23T13:49:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv OLIVEIRA, F. I. de. Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS. 2007. 210 f. Dissertação (Mestrado em Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007.
http://www.repositorio.ufc.br/handle/riufc/4068
identifier_str_mv OLIVEIRA, F. I. de. Transformada de Hilbert sobre bases de wavelets: detecção de complexos QRS. 2007. 210 f. Dissertação (Mestrado em Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007.
url http://www.repositorio.ufc.br/handle/riufc/4068
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028987139522560