Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/11279 |
Resumo: | Studying the behavior of amino acids when exposed to extreme temperature conditions is the main objetive of this thesis. In the L-valine (C5H11NO2) infrared absorption measurements were performed, while Raman scattering measurements were performed in α and β forms of L-glutamic acid (C2H9NO4). On the L-valine, the infrared apparatus allowed two types of measurements: the former the interval was ~10 to ~700 cm ̄ ¹ (comprising the far-infrared region); the latter the range was 370 – 4000 cm ̄ ¹ (encompassing the region known as mid-infrared, the thermodynamic parameter temperature assumed values between 100 K and 300 K spaced apart by 20 K. In the Raman measurements one has been got a spacing of 50 K with a temperature ranging from 18 to 300 K for both the α phase and β phase. In the β phase, several scattering geometries were used; For the Raman measurements only one scattering geometry were performed on the α phase. In the L-valine spectra were observed appearances and disappearances of modes in the far infrared region (FAR-IR). A mode in 103 cm ̄ ¹ after behave in a regular way during the cooling process, unfolds in two modes quickly, and diferente from that expected by the spectral evolution Ꞷ x Ͳ. Opposite situation occurs when two modes colapse in 163 cm ̄ ¹ and, interestingly, at the same temperature as the unfolding: ~120K. Under the same conditions two modes, in ~211 cm ̄ ¹ and ~216 cm ̄ ¹ are reduced to a single mode in ~214 cm ̄ ¹. A peak in ~190 cm ̄ ¹ disappears in the range 100-120 K. In this range we can also check the large deviations from linearity of the frequencies of the modes in 147, 196, 225 and 305 cm ̄ ¹. Further, the vibrational modes in 154 cm ̄ ¹ and 214 cm ̄ ¹ exhibit discontinuities (in this case they were found between 120 and 160 K). This suggests it is not simple conformational changes, since such events (splits, disappearances and Strong nonlinearities modes) occurs in a particular temperature range. It can be concluded from this that the Crystal structure undergoes a phase transition that starts at 120 K and is complete at 100 K. Note that for the MID region, L-valine has not significant spectral changes: the frequencies of the modes are linear as whole, constant and without discontinuities. Raman measurements in the β formo f L-glutamic acid resulted in a constant number of vibration modes in the region of network modes during the cooling, what was interpreted as stability of the material. However, there was colapse (e.g.: ~500 cm ̄ ¹, 120 K, Z(XX)Z; three modes became two modes) and mode appearances (e.g: ~930 cm ̄ ¹, 120 K, Z(XX)Z; a mode becomes two modes) in other regions of the spectrum. Such events were interpreted as molecular environment changes (~930 cm ̄ ¹), “aliasing” effect that difficult the adjustment by Lorentzian functions (eg .: ~1070 cm ̄ ¹), and conformational chanfes. Such behaviors are not related to increments or decrements on defeneracy, so they suggest the stability of L-glutamic acid in the β form. The Raman spectra obtained for the α form of L-glutamic acid were completely regular: linear modes, without discontinuities on the frequencies or number of modes. From all the results, we seek to understand what factors determine the stability of na amino acid Crystal. The behavior of this Family of materials shows three “levels” of stability (i) stable (e.g.: L-glutamic acid and L-isoleucine), (ii) conformational micro-transitions (complex vibrational behavior, e.g: L-alanine) and (iii) crystals that undergo structural phase transition (e.g.: L-valine and L-leucine). Factors such as side chains ordering, van der Waals forces and average length of the hydrogen bonds (d̄LH) may influence the stability: L-valine and taurine undergo transition (d̄LH L –val = 2.92 Å, d̄LH tau = 2.90 Å), L-alanine → conformational micro-transition (d̄LH L –ala = 2.83 Å) and L-glutamic acid stable d̄LH L –glu(α) = 2.771 Å, d̄LH L –glu(β) = 2.798 Å. Note that: d̄LH L –glu(α, β) < d̄LH L –ala < d̄LH L –val’ d̄LH tau. L-theonine is na exception because it is stable although it has d̄LH L –treo = 2.86 Å. Other experimental techniques (eg: diffraction and nêutron scattering) are suggested to be used in the future in addressing this problem. |
id |
UFC-7_dcfc73742327293c219f030d57942db4 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/11279 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmicoEspectroscopia de RamanEspectroscopia de infravermelhoAminoácidosRaman SpectroscopyStudying the behavior of amino acids when exposed to extreme temperature conditions is the main objetive of this thesis. In the L-valine (C5H11NO2) infrared absorption measurements were performed, while Raman scattering measurements were performed in α and β forms of L-glutamic acid (C2H9NO4). On the L-valine, the infrared apparatus allowed two types of measurements: the former the interval was ~10 to ~700 cm ̄ ¹ (comprising the far-infrared region); the latter the range was 370 – 4000 cm ̄ ¹ (encompassing the region known as mid-infrared, the thermodynamic parameter temperature assumed values between 100 K and 300 K spaced apart by 20 K. In the Raman measurements one has been got a spacing of 50 K with a temperature ranging from 18 to 300 K for both the α phase and β phase. In the β phase, several scattering geometries were used; For the Raman measurements only one scattering geometry were performed on the α phase. In the L-valine spectra were observed appearances and disappearances of modes in the far infrared region (FAR-IR). A mode in 103 cm ̄ ¹ after behave in a regular way during the cooling process, unfolds in two modes quickly, and diferente from that expected by the spectral evolution Ꞷ x Ͳ. Opposite situation occurs when two modes colapse in 163 cm ̄ ¹ and, interestingly, at the same temperature as the unfolding: ~120K. Under the same conditions two modes, in ~211 cm ̄ ¹ and ~216 cm ̄ ¹ are reduced to a single mode in ~214 cm ̄ ¹. A peak in ~190 cm ̄ ¹ disappears in the range 100-120 K. In this range we can also check the large deviations from linearity of the frequencies of the modes in 147, 196, 225 and 305 cm ̄ ¹. Further, the vibrational modes in 154 cm ̄ ¹ and 214 cm ̄ ¹ exhibit discontinuities (in this case they were found between 120 and 160 K). This suggests it is not simple conformational changes, since such events (splits, disappearances and Strong nonlinearities modes) occurs in a particular temperature range. It can be concluded from this that the Crystal structure undergoes a phase transition that starts at 120 K and is complete at 100 K. Note that for the MID region, L-valine has not significant spectral changes: the frequencies of the modes are linear as whole, constant and without discontinuities. Raman measurements in the β formo f L-glutamic acid resulted in a constant number of vibration modes in the region of network modes during the cooling, what was interpreted as stability of the material. However, there was colapse (e.g.: ~500 cm ̄ ¹, 120 K, Z(XX)Z; three modes became two modes) and mode appearances (e.g: ~930 cm ̄ ¹, 120 K, Z(XX)Z; a mode becomes two modes) in other regions of the spectrum. Such events were interpreted as molecular environment changes (~930 cm ̄ ¹), “aliasing” effect that difficult the adjustment by Lorentzian functions (eg .: ~1070 cm ̄ ¹), and conformational chanfes. Such behaviors are not related to increments or decrements on defeneracy, so they suggest the stability of L-glutamic acid in the β form. The Raman spectra obtained for the α form of L-glutamic acid were completely regular: linear modes, without discontinuities on the frequencies or number of modes. From all the results, we seek to understand what factors determine the stability of na amino acid Crystal. The behavior of this Family of materials shows three “levels” of stability (i) stable (e.g.: L-glutamic acid and L-isoleucine), (ii) conformational micro-transitions (complex vibrational behavior, e.g: L-alanine) and (iii) crystals that undergo structural phase transition (e.g.: L-valine and L-leucine). Factors such as side chains ordering, van der Waals forces and average length of the hydrogen bonds (d̄LH) may influence the stability: L-valine and taurine undergo transition (d̄LH L –val = 2.92 Å, d̄LH tau = 2.90 Å), L-alanine → conformational micro-transition (d̄LH L –ala = 2.83 Å) and L-glutamic acid stable d̄LH L –glu(α) = 2.771 Å, d̄LH L –glu(β) = 2.798 Å. Note that: d̄LH L –glu(α, β) < d̄LH L –ala < d̄LH L –val’ d̄LH tau. L-theonine is na exception because it is stable although it has d̄LH L –treo = 2.86 Å. Other experimental techniques (eg: diffraction and nêutron scattering) are suggested to be used in the future in addressing this problem.Estudar o comportamento dos aminoácidos quando sujeitos a condições extremas de temperatura é o objetivo principal dessa tese. Na L-valina (C_5 H_11 NO_2) foram realizados experimentos de absorção infravermelha, enquanto que experimentos de espalhamento Raman foram realizados nas fases α e β do ácido L-glutâmico (C_5 H_9 NO_4). Para a L-valina, o experimento de infravermelho foi realizado em duas regiões espectrais: na primeira o intervalo analisado foi de ~10 a ~700 cm-1 (englobando a região do infravermelho distante – FAR-IR); na segunda, o intervalo analisado foi de 370 a 4000 cm-1 (englobando a região conhecida como infravermelho médio: MID-IR). Nos experimentos Raman no ácido L-glutâmico, o intervalo espectral entre ~15 e ~4000 cm-1 foi estudado. Nos experimentos de infravermelho, o parâmetro termodinâmico temperatura assumiu valores de 100 K até 300 K espaçados por 20 K. Nos experimentos Raman conseguiu-se um espaçamento de 50 K com a temperatura variando de 18 a 300 K, tanto para a fase α como para a fase β. Na fase β, diversas geometrias de espalhamento foram utilizadas, enquanto que para a fase α somente uma geometria de espalhamento foi analisada. Da análise dos espectros da L-valina foram observados surgimentos e desaparecimentos de modos na região do infravermelho distante (FAR-IR). Um modo de rede localizado em 103 cm^(-1), desdobra-se em dois modos de maneira rápida, e diferente do que seria esperado pela evolução espectral ω x T. Situação inversa, ocorre quando dois modos colapsam em 163 cm^(-1) e, interessantemente, à mesma temperatura que no desdobramento: ~120K. Nas mesmas condições outros dois modos, em ~211 cm^(-1) e em ~216 cm^(-1) se reduzem a um único modo em ~214 cm^(-1). Um pico em ~190 cm-1 desaparece no intervalo 100-120 K. Nesse intervalo também podemos verificar grandes desvios da linearidade das frequências dos modos em 147 cm^(-1), 196 cm^(-1), 225 cm^(-1) e 305 cm^(-1). Mais ainda, os modos vibracionais em 154cm^(-1) e 214 cm^(-1) apresentam descontinuidade (nesse caso, verificadas entre 120 e 160 K). Isso sugere não se tratar de simples mudanças conformacionais, posto que tais ocorrências (desdobramentos, desaparecimentos e fortes não linearidades dos modos) se dão num intervalo particular de temperatura. Pode-se concluir daí que o cristal sofre uma transição de fase estrutural a partir de 120 K, se completando a 100 K. Observe-se que para a região MID, a L-valina não apresenta alterações espectrais significativas: as frequências dos modos no geral são lineares, constantes e sem descontinuidades. As medidas Raman na forma β do ácido L-glutâmico resultaram num número constante de modos de vibração na região dos modos da rede durante todo o resfriamento, o que foi interpretado como estabilidade do material. Entretanto, houve colapso (eg.:~500 cm-1, 200 K, Z(XX)Z; três bandas tornaram-se duas) e surgimento (eg.: ~930 cm-1, 120 K, Z(XX)Z; uma banda torna-se duas) de bandas em outras regiões do espectro. Tais ocorrências foram interpretadas como alteração do ambiente da molécula (~930 cm-1), efeito de “aliasing” dificultando o ajuste por lorentzianas (eg.: ~1070 cm-1), e mudança de conformação. Por não estarem associados a levantamentos nem incrementos de degenerescência, tais comportamentos sugerem estabilidade do ácido L-glutâmico na forma β. Os espectros Raman obtidos para a fase α do ácido L-glutâmico se apresentaram completamente regulares: modos lineares, sem descontinuidades nas frequências nem mudança no número de modos. A partir de todos os resultados obtidos, procurou-se entender que fatores determinam a estabilidade de um cristal de aminoácido. A análise do comportamento desta família de materiais mostra três “níveis” de estabilidade (i) estáveis (e.g.: ácido L-glutâmico e L-isoleucina), (ii) microtransições conformacionais (complexo comportamento vibracional, e.g.: L-alanina) e (iii) cristais que sofrem transição de fase estrutural (e.g.: L-valina e L-leucina). Fatores como ordenamento de cadeias laterais, forças de van der Waals e comprimento médio das ligações de hidrogênio (d ̅_LH) podem influenciar na estabilidade destas estruturas cristalinas. Entretanto, observando somente os comprimentos médios das ligações de hidrogênio (d ̅_LH) foi possível inferir uma relação entre esse valor e a estabilidade: L-valina e taurina sofrem transição (〖d ̅_LH〗_(L-val)=2.92 Å, 〖d ̅_LH〗_tau=2.90 Å), L-alanina ⇒ micro-transição conformacional (〖d ̅_LH〗_(L-ala)=2.83 Å) e ácido L-glutâmico estável (〖d ̅_LH〗_(L-glu(α))=2.771 Å, 〖d ̅_LH〗_(L-glu(β))=2.798 Å). Nota-se que: 〖d ̅_LH〗_(L-glu(α,β))<〖d ̅_LH〗_(L-ala)<〖d ̅_LH〗_(L-val),〖d ̅_LH〗_tau. A L-treonina constitui exceção, pois é estável embora possua 〖d ̅_LH〗_(L-treo)=2.86 Å. Outras técnicas experimentais (e.g.: difração e espalhamento de nêutrons) são sugeridas para serem utilizadas futuramente na abordagem deste problema.Freire, Paulo de Tarso CavalcanteFernandes, César Rodrigues2015-04-10T20:43:31Z2015-04-10T20:43:31Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFERNANDES, C. R. Espectroscopias Raman e infravermelho em cristais de aminoácidos : os casos da L-valina e do ácido L-glutâmico. 2015. 238 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015.http://www.repositorio.ufc.br/handle/riufc/11279porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-07-30T16:44:25Zoai:repositorio.ufc.br:riufc/11279Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:44:40.855001Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmico |
title |
Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmico |
spellingShingle |
Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmico Fernandes, César Rodrigues Espectroscopia de Raman Espectroscopia de infravermelho Aminoácidos Raman Spectroscopy |
title_short |
Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmico |
title_full |
Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmico |
title_fullStr |
Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmico |
title_full_unstemmed |
Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmico |
title_sort |
Espectroscopias Raman e infravermelho em cristais de aminoácidos: os casos da L-valina e do ácido L-glutâmico |
author |
Fernandes, César Rodrigues |
author_facet |
Fernandes, César Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Freire, Paulo de Tarso Cavalcante |
dc.contributor.author.fl_str_mv |
Fernandes, César Rodrigues |
dc.subject.por.fl_str_mv |
Espectroscopia de Raman Espectroscopia de infravermelho Aminoácidos Raman Spectroscopy |
topic |
Espectroscopia de Raman Espectroscopia de infravermelho Aminoácidos Raman Spectroscopy |
description |
Studying the behavior of amino acids when exposed to extreme temperature conditions is the main objetive of this thesis. In the L-valine (C5H11NO2) infrared absorption measurements were performed, while Raman scattering measurements were performed in α and β forms of L-glutamic acid (C2H9NO4). On the L-valine, the infrared apparatus allowed two types of measurements: the former the interval was ~10 to ~700 cm ̄ ¹ (comprising the far-infrared region); the latter the range was 370 – 4000 cm ̄ ¹ (encompassing the region known as mid-infrared, the thermodynamic parameter temperature assumed values between 100 K and 300 K spaced apart by 20 K. In the Raman measurements one has been got a spacing of 50 K with a temperature ranging from 18 to 300 K for both the α phase and β phase. In the β phase, several scattering geometries were used; For the Raman measurements only one scattering geometry were performed on the α phase. In the L-valine spectra were observed appearances and disappearances of modes in the far infrared region (FAR-IR). A mode in 103 cm ̄ ¹ after behave in a regular way during the cooling process, unfolds in two modes quickly, and diferente from that expected by the spectral evolution Ꞷ x Ͳ. Opposite situation occurs when two modes colapse in 163 cm ̄ ¹ and, interestingly, at the same temperature as the unfolding: ~120K. Under the same conditions two modes, in ~211 cm ̄ ¹ and ~216 cm ̄ ¹ are reduced to a single mode in ~214 cm ̄ ¹. A peak in ~190 cm ̄ ¹ disappears in the range 100-120 K. In this range we can also check the large deviations from linearity of the frequencies of the modes in 147, 196, 225 and 305 cm ̄ ¹. Further, the vibrational modes in 154 cm ̄ ¹ and 214 cm ̄ ¹ exhibit discontinuities (in this case they were found between 120 and 160 K). This suggests it is not simple conformational changes, since such events (splits, disappearances and Strong nonlinearities modes) occurs in a particular temperature range. It can be concluded from this that the Crystal structure undergoes a phase transition that starts at 120 K and is complete at 100 K. Note that for the MID region, L-valine has not significant spectral changes: the frequencies of the modes are linear as whole, constant and without discontinuities. Raman measurements in the β formo f L-glutamic acid resulted in a constant number of vibration modes in the region of network modes during the cooling, what was interpreted as stability of the material. However, there was colapse (e.g.: ~500 cm ̄ ¹, 120 K, Z(XX)Z; three modes became two modes) and mode appearances (e.g: ~930 cm ̄ ¹, 120 K, Z(XX)Z; a mode becomes two modes) in other regions of the spectrum. Such events were interpreted as molecular environment changes (~930 cm ̄ ¹), “aliasing” effect that difficult the adjustment by Lorentzian functions (eg .: ~1070 cm ̄ ¹), and conformational chanfes. Such behaviors are not related to increments or decrements on defeneracy, so they suggest the stability of L-glutamic acid in the β form. The Raman spectra obtained for the α form of L-glutamic acid were completely regular: linear modes, without discontinuities on the frequencies or number of modes. From all the results, we seek to understand what factors determine the stability of na amino acid Crystal. The behavior of this Family of materials shows three “levels” of stability (i) stable (e.g.: L-glutamic acid and L-isoleucine), (ii) conformational micro-transitions (complex vibrational behavior, e.g: L-alanine) and (iii) crystals that undergo structural phase transition (e.g.: L-valine and L-leucine). Factors such as side chains ordering, van der Waals forces and average length of the hydrogen bonds (d̄LH) may influence the stability: L-valine and taurine undergo transition (d̄LH L –val = 2.92 Å, d̄LH tau = 2.90 Å), L-alanine → conformational micro-transition (d̄LH L –ala = 2.83 Å) and L-glutamic acid stable d̄LH L –glu(α) = 2.771 Å, d̄LH L –glu(β) = 2.798 Å. Note that: d̄LH L –glu(α, β) < d̄LH L –ala < d̄LH L –val’ d̄LH tau. L-theonine is na exception because it is stable although it has d̄LH L –treo = 2.86 Å. Other experimental techniques (eg: diffraction and nêutron scattering) are suggested to be used in the future in addressing this problem. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-10T20:43:31Z 2015-04-10T20:43:31Z 2015 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERNANDES, C. R. Espectroscopias Raman e infravermelho em cristais de aminoácidos : os casos da L-valina e do ácido L-glutâmico. 2015. 238 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. http://www.repositorio.ufc.br/handle/riufc/11279 |
identifier_str_mv |
FERNANDES, C. R. Espectroscopias Raman e infravermelho em cristais de aminoácidos : os casos da L-valina e do ácido L-glutâmico. 2015. 238 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. |
url |
http://www.repositorio.ufc.br/handle/riufc/11279 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028929167949824 |