Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/18846 |
Resumo: | Polysaccharides are found in large quantity in seeds and they represent the main compounds of cell wall or reservoir. Among reservoir compounds, it included cotyledonary xyloglucans and endospermic galactomannans. The xyloglucans are made of a main chain of β-D-(1→4)-glucan with α-(1→6) ramifications of D-xylopyranoside or β-D-galactopyranoside-(1→2)-D-xylopyranoside residues. Endospermic galactomannans are polimeric chains of β-D-mannopyranosil (1→4) and replaceabled in O-6 for units of α-D-galactopyranosil. The aim of this work is investigate the interaction of xyloglucans and galactomannans with galactose bounding lectins and show the possibility of the usage of these polysaccharides as cheap and useful chromatographic matrices for isolation and determination of anomeric specificity of galactose bounding lectins. The interactions of lectins from seeds of Artocarpus integrifolia (frutalin), Artocarpus incisa (jacalin), Ricinus communis (ricin) e Arachis hypogaea (PNA) were performed with coluns of xyloglucans of seeds from Copaifera langsdorffii, Mucuna sloanei and Hymenaea courbaril (MC, MMu, MJ, respectively) and galactomannans from Mimosa scabrella, Stryphnodendron barbatiman, Adenanthera pavonina and Dimorphandra mollis (MM, MS, MA; MD, respectively). The galactomannans showed the best colun interaction capacity for the jacalin (MA – 0,92 mg ; MM – 1,48 mg ; MD –0,88 mg ; MS – 0,83 mg) and frutalin (MA – 0,99 mg ; MM – 1,09 mg ; MD - 0,94 mg ; MS - 0,85 mg) lectins. Remarkably the M. scabrella galactomannan showed the best colun interaction among all lectins analysed. On the other hand, ricin was better hold in coluns made of xyloglucan (MMu – 2,17 mg ;MJ – 1,30 mg; MC – 2,83 mg). For PNA lectin, differences were detected in colun interaction capacity. The best colun interaction was with the M. sloanei matrix (0,12 mg) for PNA lectin. All coluns were fill with sample extract of flour from seeds and hemagglutination assays was performed with PI and PII. In these assays, hemagglutination activity was detected in both PI and PII from the coluns. For ricin, toxic activity was made and it was detected for all obtained chromatographic samples. With SDS-PAGE it was possible confirmed the purification of the studied lectins. The bands in polyacrilamid gel were the same for the lectins purified. In conclusion, it can be suggested the usage of xyloglucans and galactomannans for isolation, purification and determination of anomeric specificity of galactose-bounding lectins. |
id |
UFC-7_e5bd3fbffd6ec8d80f3c703219412304 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/18846 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantesXyloglucans and galactomannans legumes: interaction with lectins D-galactose-bindingBioquímicaPolissacarídeosXiloglucanasGalactomananasLectinasPolysaccharidesXyloglucansGalactomannansLectinsFabaceaeLectinas vegetaisPolysaccharides are found in large quantity in seeds and they represent the main compounds of cell wall or reservoir. Among reservoir compounds, it included cotyledonary xyloglucans and endospermic galactomannans. The xyloglucans are made of a main chain of β-D-(1→4)-glucan with α-(1→6) ramifications of D-xylopyranoside or β-D-galactopyranoside-(1→2)-D-xylopyranoside residues. Endospermic galactomannans are polimeric chains of β-D-mannopyranosil (1→4) and replaceabled in O-6 for units of α-D-galactopyranosil. The aim of this work is investigate the interaction of xyloglucans and galactomannans with galactose bounding lectins and show the possibility of the usage of these polysaccharides as cheap and useful chromatographic matrices for isolation and determination of anomeric specificity of galactose bounding lectins. The interactions of lectins from seeds of Artocarpus integrifolia (frutalin), Artocarpus incisa (jacalin), Ricinus communis (ricin) e Arachis hypogaea (PNA) were performed with coluns of xyloglucans of seeds from Copaifera langsdorffii, Mucuna sloanei and Hymenaea courbaril (MC, MMu, MJ, respectively) and galactomannans from Mimosa scabrella, Stryphnodendron barbatiman, Adenanthera pavonina and Dimorphandra mollis (MM, MS, MA; MD, respectively). The galactomannans showed the best colun interaction capacity for the jacalin (MA – 0,92 mg ; MM – 1,48 mg ; MD –0,88 mg ; MS – 0,83 mg) and frutalin (MA – 0,99 mg ; MM – 1,09 mg ; MD - 0,94 mg ; MS - 0,85 mg) lectins. Remarkably the M. scabrella galactomannan showed the best colun interaction among all lectins analysed. On the other hand, ricin was better hold in coluns made of xyloglucan (MMu – 2,17 mg ;MJ – 1,30 mg; MC – 2,83 mg). For PNA lectin, differences were detected in colun interaction capacity. The best colun interaction was with the M. sloanei matrix (0,12 mg) for PNA lectin. All coluns were fill with sample extract of flour from seeds and hemagglutination assays was performed with PI and PII. In these assays, hemagglutination activity was detected in both PI and PII from the coluns. For ricin, toxic activity was made and it was detected for all obtained chromatographic samples. With SDS-PAGE it was possible confirmed the purification of the studied lectins. The bands in polyacrilamid gel were the same for the lectins purified. In conclusion, it can be suggested the usage of xyloglucans and galactomannans for isolation, purification and determination of anomeric specificity of galactose-bounding lectins.Polissacarídeos ocorrem em grandes quantidades nas sementes como componentes da parede celular ou como reserva. Dentre estes últimos, incluem-se as xiloglucanas cotiledonárias e as galactomananas endospérmicas. As xiloglucanas apresentam uma cadeia principal de β-D-(1→4)-glucana ramificada com ligações α-(1→6) por resíduos D-xilopiranosídeos ou β-D-galactopiranosídeo-(1→2)-D-xilopiranosídeos, enquanto as galactomananas endospérmicas consistem em cadeias poliméricas de resíduos β-D-manopiranosil (1→4) ligados, substituídos em O-6 por unidades de α-D-galactopiranosil. O objetivo deste trabalho foi analisar a interação de xiloglucanas e galactomananas com lectinas galactose-ligantes e, assim, sugerir o uso de tais polissacarídeos como alternativa barata e eficaz na preparação de matrizes cromatográficas para o isolamento e determinação da especificidade anomérica de novas lectinas. Dessa forma, as interações das lectinas das sementes de Artocarpus integrifolia (frutalina), Artocarpus incisa (jacalina), Ricinus communis (ricina) e Arachis hypogaea (PNA) com matrizes de xiloglucanas de sementes de Copaifera langsdorffii, Mucuna sloanei e Hymenaea courbaril (MC, MMu, MJ, respectivamente) e de galactomananas de Mimosa scabrella, Stryphnodendron barbatiman, Adenanthera pavonina e Dimorphandra mollis (MM, MS, MA; MD, respectivamente) foram analisadas. As galactomananas apresentaram melhor capacidade de retenção da jacalina (MA – 0,92 mg ; MM – 1,48 mg ; MD –0,88 mg ; MS – 0,83 mg) e da frutalina (MA – 0,99 mg ; MM – 1,09 mg ; MD – 0,94 mg ; MS – 0,85 mg), lectinas que possuem especificidade por α-D-galactose. Vale destacar que a galactomanana de M. scabrella apresentou melhor capacidade de retenção da lectinas testadas. Por outro lado a ricina, capaz de ligar-se aos dois anômeros, mas que se liga preferencialmente ao anômero β, teve maior massa retida nas colunas de xiloglucana (MMu – 2,17 mg ;MJ – 1,30 mg; MC – 2,83 mg). Houve diferença nos perfis de retenção da PNA, que também se liga aos anômeros α e β da galactose, sendo que a melhor retenção foi na coluna contendo matriz de M. sloanei (0,12 mg). As colunas foram todas saturadas com extrato bruto a partir das farinhas das sementes, para que se utilizasse a capacidade máxima de retenção de cada matriz. Atividade hemaglutinante foi detectada em ambos os picos PI e PII. Para a ricina, atividade tóxica foi realizada e detectada para todos os PII obtidos. Por meio de SDS-PAGE, a pureza de cada uma das lectinas foi confirmada. Diante dos resultados expostos, pode-se sugerir o uso de xiloglucanas e galactomananas para o isolamento, purificação e determinação da especificidade anomérica de lectinas galactose-ligantes.Moreira, Renato de AzevedoTeixeira, Daniele Maria AlvesLandim, Patrícia Gadelha de Castro2016-08-02T20:08:26Z2016-08-02T20:08:26Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLANDIM, Patrícia Gadelha de Castro. Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes. 2007. 100 f. Dissertação (Mestrado em Bioquímica) - Universidade Federal do Ceará, Fortaleza, 2007.http://www.repositorio.ufc.br/handle/riufc/18846porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-05-25T13:18:25Zoai:repositorio.ufc.br:riufc/18846Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-05-25T13:18:25Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes Xyloglucans and galactomannans legumes: interaction with lectins D-galactose-binding |
title |
Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes |
spellingShingle |
Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes Landim, Patrícia Gadelha de Castro Bioquímica Polissacarídeos Xiloglucanas Galactomananas Lectinas Polysaccharides Xyloglucans Galactomannans Lectins Fabaceae Lectinas vegetais |
title_short |
Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes |
title_full |
Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes |
title_fullStr |
Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes |
title_full_unstemmed |
Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes |
title_sort |
Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes |
author |
Landim, Patrícia Gadelha de Castro |
author_facet |
Landim, Patrícia Gadelha de Castro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Moreira, Renato de Azevedo Teixeira, Daniele Maria Alves |
dc.contributor.author.fl_str_mv |
Landim, Patrícia Gadelha de Castro |
dc.subject.por.fl_str_mv |
Bioquímica Polissacarídeos Xiloglucanas Galactomananas Lectinas Polysaccharides Xyloglucans Galactomannans Lectins Fabaceae Lectinas vegetais |
topic |
Bioquímica Polissacarídeos Xiloglucanas Galactomananas Lectinas Polysaccharides Xyloglucans Galactomannans Lectins Fabaceae Lectinas vegetais |
description |
Polysaccharides are found in large quantity in seeds and they represent the main compounds of cell wall or reservoir. Among reservoir compounds, it included cotyledonary xyloglucans and endospermic galactomannans. The xyloglucans are made of a main chain of β-D-(1→4)-glucan with α-(1→6) ramifications of D-xylopyranoside or β-D-galactopyranoside-(1→2)-D-xylopyranoside residues. Endospermic galactomannans are polimeric chains of β-D-mannopyranosil (1→4) and replaceabled in O-6 for units of α-D-galactopyranosil. The aim of this work is investigate the interaction of xyloglucans and galactomannans with galactose bounding lectins and show the possibility of the usage of these polysaccharides as cheap and useful chromatographic matrices for isolation and determination of anomeric specificity of galactose bounding lectins. The interactions of lectins from seeds of Artocarpus integrifolia (frutalin), Artocarpus incisa (jacalin), Ricinus communis (ricin) e Arachis hypogaea (PNA) were performed with coluns of xyloglucans of seeds from Copaifera langsdorffii, Mucuna sloanei and Hymenaea courbaril (MC, MMu, MJ, respectively) and galactomannans from Mimosa scabrella, Stryphnodendron barbatiman, Adenanthera pavonina and Dimorphandra mollis (MM, MS, MA; MD, respectively). The galactomannans showed the best colun interaction capacity for the jacalin (MA – 0,92 mg ; MM – 1,48 mg ; MD –0,88 mg ; MS – 0,83 mg) and frutalin (MA – 0,99 mg ; MM – 1,09 mg ; MD - 0,94 mg ; MS - 0,85 mg) lectins. Remarkably the M. scabrella galactomannan showed the best colun interaction among all lectins analysed. On the other hand, ricin was better hold in coluns made of xyloglucan (MMu – 2,17 mg ;MJ – 1,30 mg; MC – 2,83 mg). For PNA lectin, differences were detected in colun interaction capacity. The best colun interaction was with the M. sloanei matrix (0,12 mg) for PNA lectin. All coluns were fill with sample extract of flour from seeds and hemagglutination assays was performed with PI and PII. In these assays, hemagglutination activity was detected in both PI and PII from the coluns. For ricin, toxic activity was made and it was detected for all obtained chromatographic samples. With SDS-PAGE it was possible confirmed the purification of the studied lectins. The bands in polyacrilamid gel were the same for the lectins purified. In conclusion, it can be suggested the usage of xyloglucans and galactomannans for isolation, purification and determination of anomeric specificity of galactose-bounding lectins. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2016-08-02T20:08:26Z 2016-08-02T20:08:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
LANDIM, Patrícia Gadelha de Castro. Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes. 2007. 100 f. Dissertação (Mestrado em Bioquímica) - Universidade Federal do Ceará, Fortaleza, 2007. http://www.repositorio.ufc.br/handle/riufc/18846 |
identifier_str_mv |
LANDIM, Patrícia Gadelha de Castro. Xiloglucanas e galactomananas de leguminosas: interação com lectinas D-galactose-ligantes. 2007. 100 f. Dissertação (Mestrado em Bioquímica) - Universidade Federal do Ceará, Fortaleza, 2007. |
url |
http://www.repositorio.ufc.br/handle/riufc/18846 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1825332448058146816 |