Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso

Detalhes bibliográficos
Autor(a) principal: Correia, Márcio André Souto
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/27526
Resumo: Given today’s growing number of devices around users, and, at the same time, their faster and frequent interactions with these devices, new security mechanisms have emerged aiming at reducing the time spent by users with authentication as well as raising the security level related to identity verification. In this sense, there are several proposals in the literature with transparent and continuous authentication mechanisms that combine biometric data retrieved from actions that users already do while using mobile devices (e.g. location, screen touch, keystroke, gait, voice, among others). In the literature review performed in this work were found nine proposals that use outdoor location and merge other kinds of biometric features as input to their proposed authentication mechanism. These proposals have in common not only the use of outdoor location but they also fail to evaluate properly each biometric features set individually. Therefore, this work provides a new process for evaluation of biometric features by adapting guidelines of machine learning to perform experiments based on a statistical methodology. This is important to know how the mechanism works, which allows the identification and reuse of features extraction techniques that provide the best performance. Moreover, this process is also used in this work to evaluate and compare the outdoor location features identified in literature. For this evaluation, experiments were conducted with three classification algorithms (C4.5, SVM, and Naive Bayes) available in the WEKA machine learning environment and four datasets, two of which are public (Geolife and MIT Reality). Besides that, twelve measures were collected, being nine efficacy and three efficiency measures. In the analysis of the experimental results, significant variations were found in accuracy, CPU time, and memory regarding all evaluated scenarios. With these results, this work provides evidence of the viability of the proposed process and guides the choice of outdoor location features and learning algorithms that provide better performance for constructing transparent and continuous authentication mechanisms.
id UFC-7_fbdebbc5e85a61ed55e5e6f26ad64877
oai_identifier_str oai:repositorio.ufc.br:riufc/27526
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de casoEvaluation of location features for transparent and continuous authentication: process and case studyAutenticaçãoBiometriaAvaliação de desempenhoAprendizado de máquinaComputação móvelGiven today’s growing number of devices around users, and, at the same time, their faster and frequent interactions with these devices, new security mechanisms have emerged aiming at reducing the time spent by users with authentication as well as raising the security level related to identity verification. In this sense, there are several proposals in the literature with transparent and continuous authentication mechanisms that combine biometric data retrieved from actions that users already do while using mobile devices (e.g. location, screen touch, keystroke, gait, voice, among others). In the literature review performed in this work were found nine proposals that use outdoor location and merge other kinds of biometric features as input to their proposed authentication mechanism. These proposals have in common not only the use of outdoor location but they also fail to evaluate properly each biometric features set individually. Therefore, this work provides a new process for evaluation of biometric features by adapting guidelines of machine learning to perform experiments based on a statistical methodology. This is important to know how the mechanism works, which allows the identification and reuse of features extraction techniques that provide the best performance. Moreover, this process is also used in this work to evaluate and compare the outdoor location features identified in literature. For this evaluation, experiments were conducted with three classification algorithms (C4.5, SVM, and Naive Bayes) available in the WEKA machine learning environment and four datasets, two of which are public (Geolife and MIT Reality). Besides that, twelve measures were collected, being nine efficacy and three efficiency measures. In the analysis of the experimental results, significant variations were found in accuracy, CPU time, and memory regarding all evaluated scenarios. With these results, this work provides evidence of the viability of the proposed process and guides the choice of outdoor location features and learning algorithms that provide better performance for constructing transparent and continuous authentication mechanisms.Com um número cada vez maior de dispositivos ao redor dos usuários e, ao mesmo tempo, aplicações que demandam interações mais rápidas e frequentes com esses equipamentos, novos mecanismos buscam reduzir o tempo gasto pelos usuários com autenticação e aumentar o nível de segurança relacionado com a verificação de identidade. Nesse sentido, existem várias propostas na literatura com mecanismos de autenticação transparente e contínua que combinam dados biométricos obtidos a partir de ações que os usuários já realizam enquanto usam os dispositivos móveis (e.g. localização, toque na tela, digitação, marcha, voz, entre outras). Na revisão da literatura realizada neste trabalho, foram encontradas nove propostas que usam a localização outdoor do usuário combinada com outros tipos de features biométricas como entrada para o mecanismo de autenticação proposto. Essas propostas têm em comum não só o uso da localização outdoor, mas também o fato de não conseguirem avaliar de maneira adequada cada conjunto de features individualmente. Sendo assim, este trabalho tem como objetivo propor um processo de avaliação de features biométricas, adaptando diretrizes de aprendizado de máquina, para realização de experimentos com base em uma metodologia estatística. Esse processo de avaliação é importante para a completa compreensão do funcionamento do mecanismo proposto, o que permite a identificação e o reuso das técnicas de extração de features que oferecem melhor desempenho. Além disso, um estudo de caso usando o processo é realizado para a avaliação e a comparação das features de localização outdoor identificadas na literatura. Nessa avaliação foram realizados experimentos com três algoritmos de classificação (C4.5, SVM e Naive Bayes) disponíveis no ambiente de aprendizado de máquina WEKA e quatro conjuntos de dados, sendo dois deles públicos (Geolife e MIT Reality). Foram também coletadas doze medidas, sendo nove delas de eficácia e três de eficiência. A análise dos resultados dos experimentos mostrou variações significativas na acurácia, uso de CPU e memória, considerando todos os cenários avaliados. Com esses resultados, este trabalho fornece evidências sobre a viabilidade do processo proposto, produzindo resultados para guiar a escolha de features de localização outdoor e algoritmos de aprendizado que oferecem melhor desempenho para a construção de mecanismos de autenticação transparente e contínua.Andrade, Rossana Maria de CastroCorreia, Márcio André Souto2017-11-14T20:41:42Z2017-11-14T20:41:42Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCORREIA, Márcio André Souto. Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso. 2016. 101 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, Fortaleza, 2016.http://www.repositorio.ufc.br/handle/riufc/27526porreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-06-23T14:14:22Zoai:repositorio.ufc.br:riufc/27526Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:34:08.969432Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso
Evaluation of location features for transparent and continuous authentication: process and case study
title Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso
spellingShingle Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso
Correia, Márcio André Souto
Autenticação
Biometria
Avaliação de desempenho
Aprendizado de máquina
Computação móvel
title_short Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso
title_full Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso
title_fullStr Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso
title_full_unstemmed Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso
title_sort Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso
author Correia, Márcio André Souto
author_facet Correia, Márcio André Souto
author_role author
dc.contributor.none.fl_str_mv Andrade, Rossana Maria de Castro
dc.contributor.author.fl_str_mv Correia, Márcio André Souto
dc.subject.por.fl_str_mv Autenticação
Biometria
Avaliação de desempenho
Aprendizado de máquina
Computação móvel
topic Autenticação
Biometria
Avaliação de desempenho
Aprendizado de máquina
Computação móvel
description Given today’s growing number of devices around users, and, at the same time, their faster and frequent interactions with these devices, new security mechanisms have emerged aiming at reducing the time spent by users with authentication as well as raising the security level related to identity verification. In this sense, there are several proposals in the literature with transparent and continuous authentication mechanisms that combine biometric data retrieved from actions that users already do while using mobile devices (e.g. location, screen touch, keystroke, gait, voice, among others). In the literature review performed in this work were found nine proposals that use outdoor location and merge other kinds of biometric features as input to their proposed authentication mechanism. These proposals have in common not only the use of outdoor location but they also fail to evaluate properly each biometric features set individually. Therefore, this work provides a new process for evaluation of biometric features by adapting guidelines of machine learning to perform experiments based on a statistical methodology. This is important to know how the mechanism works, which allows the identification and reuse of features extraction techniques that provide the best performance. Moreover, this process is also used in this work to evaluate and compare the outdoor location features identified in literature. For this evaluation, experiments were conducted with three classification algorithms (C4.5, SVM, and Naive Bayes) available in the WEKA machine learning environment and four datasets, two of which are public (Geolife and MIT Reality). Besides that, twelve measures were collected, being nine efficacy and three efficiency measures. In the analysis of the experimental results, significant variations were found in accuracy, CPU time, and memory regarding all evaluated scenarios. With these results, this work provides evidence of the viability of the proposed process and guides the choice of outdoor location features and learning algorithms that provide better performance for constructing transparent and continuous authentication mechanisms.
publishDate 2016
dc.date.none.fl_str_mv 2016
2017-11-14T20:41:42Z
2017-11-14T20:41:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CORREIA, Márcio André Souto. Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso. 2016. 101 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, Fortaleza, 2016.
http://www.repositorio.ufc.br/handle/riufc/27526
identifier_str_mv CORREIA, Márcio André Souto. Avaliação de features de localização para autenticação transparente e contínua: processo e estudo de caso. 2016. 101 f. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal do Ceará, Fortaleza, 2016.
url http://www.repositorio.ufc.br/handle/riufc/27526
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028858480295936