Bots on Twitter: Evaluative Analysis on non-authentic tweets

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Luana Santos
Data de Publicação: 2022
Outros Autores: Cecchin, Renan de Siqueira
Tipo de documento: Artigo
Idioma: por
Título da fonte: Entrepalavras
Texto Completo: http://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285
Resumo: Among the information manipulation strategies, inauthentic accounts have been gaining strength, especially when related to issues about politics. The social network that makes this action easier is Twitter, with its bots and hashtags system. With this in mind, in this article we intend to locate, analyze and categorize occurences of evaluation in inauthentic accounts that encourage the spread of beliefs and opnions about the current brazilian political scenario. Through use of the Bot Sentinel, which use machine learning based on a mathematical model (ZHANG, 2020) to predict the authenticity of a user and expose inauthentic accounts and their connections with the most commented themes, we collect 60 tweets posted between may and october of 2020. From that, we selected 10 tweets from non-authentic accounts containing the most popular hashtag in your month in its said period for each month of the gathering. The theoretical apparatus on which we rely is the appraisal system, more precisely the attitude subsystem (MARTIN; WHITE, 2005), to see how such evaluations operate to build relations of alignment and relationships between writers and their readers. The results indicate the use of evaluative standards of positive capacity for the president of the republic and of negative property to denigrate your opponents’ image, accentuating the idea of Us vs. Them (BORGES; VIDIGAL, 2018).
id UFC-9_d12a2ea51ac4f55b05fe0e971b4eea42
oai_identifier_str oai:ojs.localhost:article/2285
network_acronym_str UFC-9
network_name_str Entrepalavras
repository_id_str
spelling Bots on Twitter: Evaluative Analysis on non-authentic tweetsBots no Twitter: Análise Avaliativa de tweets não autênticosSystemic functional linguistics. Appraisal. Inauthentic accounts. Bot Sentinel.Linguística sistêmico-funcional. Avaliatividade. Contas inautênticas. Bot Sentinel.Among the information manipulation strategies, inauthentic accounts have been gaining strength, especially when related to issues about politics. The social network that makes this action easier is Twitter, with its bots and hashtags system. With this in mind, in this article we intend to locate, analyze and categorize occurences of evaluation in inauthentic accounts that encourage the spread of beliefs and opnions about the current brazilian political scenario. Through use of the Bot Sentinel, which use machine learning based on a mathematical model (ZHANG, 2020) to predict the authenticity of a user and expose inauthentic accounts and their connections with the most commented themes, we collect 60 tweets posted between may and october of 2020. From that, we selected 10 tweets from non-authentic accounts containing the most popular hashtag in your month in its said period for each month of the gathering. The theoretical apparatus on which we rely is the appraisal system, more precisely the attitude subsystem (MARTIN; WHITE, 2005), to see how such evaluations operate to build relations of alignment and relationships between writers and their readers. The results indicate the use of evaluative standards of positive capacity for the president of the republic and of negative property to denigrate your opponents’ image, accentuating the idea of Us vs. Them (BORGES; VIDIGAL, 2018).Dentre as estratégias de manipulação de informações, contas inautênticas em redes sociais têm ganhado força, sobretudo quando relacionadas a temas sobre política. A rede social que mais facilita essa ação é o Twitter, com seu sistema de bots e hashtags. Tendo isso em vista, neste artigo pretendemos localizar, analisar e categorizar ocorrências de avaliações em contas inautênticas que suscitam a disseminação de crenças e opiniões acerca do cenário político atual brasileiro. Por meio do site Bot Sentinel, que utiliza machine learning com base em um modelo matemático (ZHANG, 2020) para prever a autenticidade de um usuário e expor contas inautênticas e suas conexões com os temas mais comentados, coletamos as hashtags mais utilizadas entre maio e outubro de 2020. A partir disso, selecionamos 10 tweets de contas inautênticas contendo a hashtag mais popular em seu referido período para cada mês da coleta. O aparato teórico em que nos baseamos é o sistema de avaliatividade, mais precisamente o subsistema de atitude (MARTIN; WHITE, 2005), para verificarmos como tais avaliações operam para construir relações de alinhamento e relacionamento entre os escritores e seus leitores. Os resultados indicam o uso de padrões avaliativos de capacidade positiva para o Presidente da República e de propriedade negativa para denegrir a imagem de seus opositores, acentuando a ideia de Nós vs. Eles (BORGES; VIDIGAL, 2018).Universidade Federal do CearáPrograma Institucional de Bolsas de Iniciação Científica - CNPqGonçalves, Luana SantosCecchin, Renan de Siqueira2022-01-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/228510.22168/2237-6321-32285Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-5252237-6321reponame:Entrepalavrasinstname:Universidade Federal do Ceará (UFC)instacron:UFCporhttp://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285/867Direitos autorais 2022 Entrepalavrasinfo:eu-repo/semantics/openAccess2022-03-22T10:41:04Zoai:ojs.localhost:article/2285Revistahttp://www.entrepalavras.ufc.br/revista/index.php/Revista/indexPUBhttp://www.entrepalavras.ufc.br/revista/index.php/Revista/oaiwebmaster@entrepalavras.ufc.br||editor@entrepalavras.ufc.br2237-63212237-6321opendoar:2022-03-22T10:41:04Entrepalavras - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Bots on Twitter: Evaluative Analysis on non-authentic tweets
Bots no Twitter: Análise Avaliativa de tweets não autênticos
title Bots on Twitter: Evaluative Analysis on non-authentic tweets
spellingShingle Bots on Twitter: Evaluative Analysis on non-authentic tweets
Gonçalves, Luana Santos
Systemic functional linguistics. Appraisal. Inauthentic accounts. Bot Sentinel.
Linguística sistêmico-funcional. Avaliatividade. Contas inautênticas. Bot Sentinel.
title_short Bots on Twitter: Evaluative Analysis on non-authentic tweets
title_full Bots on Twitter: Evaluative Analysis on non-authentic tweets
title_fullStr Bots on Twitter: Evaluative Analysis on non-authentic tweets
title_full_unstemmed Bots on Twitter: Evaluative Analysis on non-authentic tweets
title_sort Bots on Twitter: Evaluative Analysis on non-authentic tweets
author Gonçalves, Luana Santos
author_facet Gonçalves, Luana Santos
Cecchin, Renan de Siqueira
author_role author
author2 Cecchin, Renan de Siqueira
author2_role author
dc.contributor.none.fl_str_mv
Programa Institucional de Bolsas de Iniciação Científica - CNPq
dc.contributor.author.fl_str_mv Gonçalves, Luana Santos
Cecchin, Renan de Siqueira
dc.subject.por.fl_str_mv Systemic functional linguistics. Appraisal. Inauthentic accounts. Bot Sentinel.
Linguística sistêmico-funcional. Avaliatividade. Contas inautênticas. Bot Sentinel.
topic Systemic functional linguistics. Appraisal. Inauthentic accounts. Bot Sentinel.
Linguística sistêmico-funcional. Avaliatividade. Contas inautênticas. Bot Sentinel.
description Among the information manipulation strategies, inauthentic accounts have been gaining strength, especially when related to issues about politics. The social network that makes this action easier is Twitter, with its bots and hashtags system. With this in mind, in this article we intend to locate, analyze and categorize occurences of evaluation in inauthentic accounts that encourage the spread of beliefs and opnions about the current brazilian political scenario. Through use of the Bot Sentinel, which use machine learning based on a mathematical model (ZHANG, 2020) to predict the authenticity of a user and expose inauthentic accounts and their connections with the most commented themes, we collect 60 tweets posted between may and october of 2020. From that, we selected 10 tweets from non-authentic accounts containing the most popular hashtag in your month in its said period for each month of the gathering. The theoretical apparatus on which we rely is the appraisal system, more precisely the attitude subsystem (MARTIN; WHITE, 2005), to see how such evaluations operate to build relations of alignment and relationships between writers and their readers. The results indicate the use of evaluative standards of positive capacity for the president of the republic and of negative property to denigrate your opponents’ image, accentuating the idea of Us vs. Them (BORGES; VIDIGAL, 2018).
publishDate 2022
dc.date.none.fl_str_mv 2022-01-27
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285
10.22168/2237-6321-32285
url http://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285
identifier_str_mv 10.22168/2237-6321-32285
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285/867
dc.rights.driver.fl_str_mv Direitos autorais 2022 Entrepalavras
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2022 Entrepalavras
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Ceará
publisher.none.fl_str_mv Universidade Federal do Ceará
dc.source.none.fl_str_mv Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525
Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525
Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525
Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525
Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525
2237-6321
reponame:Entrepalavras
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Entrepalavras
collection Entrepalavras
repository.name.fl_str_mv Entrepalavras - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv webmaster@entrepalavras.ufc.br||editor@entrepalavras.ufc.br
_version_ 1798329727312723968