Bots on Twitter: Evaluative Analysis on non-authentic tweets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Entrepalavras |
Texto Completo: | http://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285 |
Resumo: | Among the information manipulation strategies, inauthentic accounts have been gaining strength, especially when related to issues about politics. The social network that makes this action easier is Twitter, with its bots and hashtags system. With this in mind, in this article we intend to locate, analyze and categorize occurences of evaluation in inauthentic accounts that encourage the spread of beliefs and opnions about the current brazilian political scenario. Through use of the Bot Sentinel, which use machine learning based on a mathematical model (ZHANG, 2020) to predict the authenticity of a user and expose inauthentic accounts and their connections with the most commented themes, we collect 60 tweets posted between may and october of 2020. From that, we selected 10 tweets from non-authentic accounts containing the most popular hashtag in your month in its said period for each month of the gathering. The theoretical apparatus on which we rely is the appraisal system, more precisely the attitude subsystem (MARTIN; WHITE, 2005), to see how such evaluations operate to build relations of alignment and relationships between writers and their readers. The results indicate the use of evaluative standards of positive capacity for the president of the republic and of negative property to denigrate your opponents’ image, accentuating the idea of Us vs. Them (BORGES; VIDIGAL, 2018). |
id |
UFC-9_d12a2ea51ac4f55b05fe0e971b4eea42 |
---|---|
oai_identifier_str |
oai:ojs.localhost:article/2285 |
network_acronym_str |
UFC-9 |
network_name_str |
Entrepalavras |
repository_id_str |
|
spelling |
Bots on Twitter: Evaluative Analysis on non-authentic tweetsBots no Twitter: Análise Avaliativa de tweets não autênticosSystemic functional linguistics. Appraisal. Inauthentic accounts. Bot Sentinel.Linguística sistêmico-funcional. Avaliatividade. Contas inautênticas. Bot Sentinel.Among the information manipulation strategies, inauthentic accounts have been gaining strength, especially when related to issues about politics. The social network that makes this action easier is Twitter, with its bots and hashtags system. With this in mind, in this article we intend to locate, analyze and categorize occurences of evaluation in inauthentic accounts that encourage the spread of beliefs and opnions about the current brazilian political scenario. Through use of the Bot Sentinel, which use machine learning based on a mathematical model (ZHANG, 2020) to predict the authenticity of a user and expose inauthentic accounts and their connections with the most commented themes, we collect 60 tweets posted between may and october of 2020. From that, we selected 10 tweets from non-authentic accounts containing the most popular hashtag in your month in its said period for each month of the gathering. The theoretical apparatus on which we rely is the appraisal system, more precisely the attitude subsystem (MARTIN; WHITE, 2005), to see how such evaluations operate to build relations of alignment and relationships between writers and their readers. The results indicate the use of evaluative standards of positive capacity for the president of the republic and of negative property to denigrate your opponents’ image, accentuating the idea of Us vs. Them (BORGES; VIDIGAL, 2018).Dentre as estratégias de manipulação de informações, contas inautênticas em redes sociais têm ganhado força, sobretudo quando relacionadas a temas sobre política. A rede social que mais facilita essa ação é o Twitter, com seu sistema de bots e hashtags. Tendo isso em vista, neste artigo pretendemos localizar, analisar e categorizar ocorrências de avaliações em contas inautênticas que suscitam a disseminação de crenças e opiniões acerca do cenário político atual brasileiro. Por meio do site Bot Sentinel, que utiliza machine learning com base em um modelo matemático (ZHANG, 2020) para prever a autenticidade de um usuário e expor contas inautênticas e suas conexões com os temas mais comentados, coletamos as hashtags mais utilizadas entre maio e outubro de 2020. A partir disso, selecionamos 10 tweets de contas inautênticas contendo a hashtag mais popular em seu referido período para cada mês da coleta. O aparato teórico em que nos baseamos é o sistema de avaliatividade, mais precisamente o subsistema de atitude (MARTIN; WHITE, 2005), para verificarmos como tais avaliações operam para construir relações de alinhamento e relacionamento entre os escritores e seus leitores. Os resultados indicam o uso de padrões avaliativos de capacidade positiva para o Presidente da República e de propriedade negativa para denegrir a imagem de seus opositores, acentuando a ideia de Nós vs. Eles (BORGES; VIDIGAL, 2018).Universidade Federal do CearáPrograma Institucional de Bolsas de Iniciação Científica - CNPqGonçalves, Luana SantosCecchin, Renan de Siqueira2022-01-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/228510.22168/2237-6321-32285Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-5252237-6321reponame:Entrepalavrasinstname:Universidade Federal do Ceará (UFC)instacron:UFCporhttp://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285/867Direitos autorais 2022 Entrepalavrasinfo:eu-repo/semantics/openAccess2022-03-22T10:41:04Zoai:ojs.localhost:article/2285Revistahttp://www.entrepalavras.ufc.br/revista/index.php/Revista/indexPUBhttp://www.entrepalavras.ufc.br/revista/index.php/Revista/oaiwebmaster@entrepalavras.ufc.br||editor@entrepalavras.ufc.br2237-63212237-6321opendoar:2022-03-22T10:41:04Entrepalavras - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Bots on Twitter: Evaluative Analysis on non-authentic tweets Bots no Twitter: Análise Avaliativa de tweets não autênticos |
title |
Bots on Twitter: Evaluative Analysis on non-authentic tweets |
spellingShingle |
Bots on Twitter: Evaluative Analysis on non-authentic tweets Gonçalves, Luana Santos Systemic functional linguistics. Appraisal. Inauthentic accounts. Bot Sentinel. Linguística sistêmico-funcional. Avaliatividade. Contas inautênticas. Bot Sentinel. |
title_short |
Bots on Twitter: Evaluative Analysis on non-authentic tweets |
title_full |
Bots on Twitter: Evaluative Analysis on non-authentic tweets |
title_fullStr |
Bots on Twitter: Evaluative Analysis on non-authentic tweets |
title_full_unstemmed |
Bots on Twitter: Evaluative Analysis on non-authentic tweets |
title_sort |
Bots on Twitter: Evaluative Analysis on non-authentic tweets |
author |
Gonçalves, Luana Santos |
author_facet |
Gonçalves, Luana Santos Cecchin, Renan de Siqueira |
author_role |
author |
author2 |
Cecchin, Renan de Siqueira |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Programa Institucional de Bolsas de Iniciação Científica - CNPq |
dc.contributor.author.fl_str_mv |
Gonçalves, Luana Santos Cecchin, Renan de Siqueira |
dc.subject.por.fl_str_mv |
Systemic functional linguistics. Appraisal. Inauthentic accounts. Bot Sentinel. Linguística sistêmico-funcional. Avaliatividade. Contas inautênticas. Bot Sentinel. |
topic |
Systemic functional linguistics. Appraisal. Inauthentic accounts. Bot Sentinel. Linguística sistêmico-funcional. Avaliatividade. Contas inautênticas. Bot Sentinel. |
description |
Among the information manipulation strategies, inauthentic accounts have been gaining strength, especially when related to issues about politics. The social network that makes this action easier is Twitter, with its bots and hashtags system. With this in mind, in this article we intend to locate, analyze and categorize occurences of evaluation in inauthentic accounts that encourage the spread of beliefs and opnions about the current brazilian political scenario. Through use of the Bot Sentinel, which use machine learning based on a mathematical model (ZHANG, 2020) to predict the authenticity of a user and expose inauthentic accounts and their connections with the most commented themes, we collect 60 tweets posted between may and october of 2020. From that, we selected 10 tweets from non-authentic accounts containing the most popular hashtag in your month in its said period for each month of the gathering. The theoretical apparatus on which we rely is the appraisal system, more precisely the attitude subsystem (MARTIN; WHITE, 2005), to see how such evaluations operate to build relations of alignment and relationships between writers and their readers. The results indicate the use of evaluative standards of positive capacity for the president of the republic and of negative property to denigrate your opponents’ image, accentuating the idea of Us vs. Them (BORGES; VIDIGAL, 2018). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-27 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285 10.22168/2237-6321-32285 |
url |
http://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285 |
identifier_str_mv |
10.22168/2237-6321-32285 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://www.entrepalavras.ufc.br/revista/index.php/Revista/article/view/2285/867 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2022 Entrepalavras info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2022 Entrepalavras |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Ceará |
publisher.none.fl_str_mv |
Universidade Federal do Ceará |
dc.source.none.fl_str_mv |
Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525 Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525 Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525 Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525 Entrepalavras; v. 11, n. 3 (11): Linguagem e Tecnologia; 502-525 2237-6321 reponame:Entrepalavras instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Entrepalavras |
collection |
Entrepalavras |
repository.name.fl_str_mv |
Entrepalavras - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
webmaster@entrepalavras.ufc.br||editor@entrepalavras.ufc.br |
_version_ |
1798329727312723968 |