Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures

Detalhes bibliográficos
Autor(a) principal: Coradi,Paulo C.
Data de Publicação: 2016
Outros Autores: Fernandes,Carlos H. P., Helmich,Jean C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662016000400385
Resumo: ABSTRACT The aim of this study was to evaluate the influence of the initial moisture content of soybeans and the drying air temperatures on drying kinetics and grain quality, and find the best mathematical model that fit the experimental data of drying, effective diffusivity and isosteric heat of desorption. The experimental design was completely randomized (CRD), with a factorial scheme (4 x 2), four drying temperatures (75, 90, 105 and 120 ºC) and two initial moisture contents (25 and 19% d.b.), with three replicates. The initial moisture content of the product interferes with the drying time. The model of Wang and Singh proved to be more suitable to describe the drying of soybeans to temperature ranges of the drying air of 75, 90, 105 and 120 °C and initial moisture contents of 19 and 25% (d.b.). The effective diffusivity obtained from the drying of soybeans was higher (2.5 x 10-11 m2 s-1) for a temperature of 120 °C and water content of 25% (d.b.). Drying of soybeans at higher temperatures (above 105 °C) and higher initial water content (25% d.b.) also increases the amount of energy (3894.57 kJ kg-1), i.e., the isosteric heat of desorption necessary to perform the process. Drying air temperature and different initial moisture contents affected the quality of soybean along the drying time (electrical conductivity of 540.35 µS cm-1g-1); however, not affect the final yield of the oil extracted from soybean grains (15.69%).
id UFCG-1_231ae2e5008d5ac6db52efb1749888f6
oai_identifier_str oai:scielo:S1415-43662016000400385
network_acronym_str UFCG-1
network_name_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository_id_str
spelling Adjustment of mathematical models and quality of soybean grains in the drying with high temperaturesdimensioningoptimizationpost-harvest.ABSTRACT The aim of this study was to evaluate the influence of the initial moisture content of soybeans and the drying air temperatures on drying kinetics and grain quality, and find the best mathematical model that fit the experimental data of drying, effective diffusivity and isosteric heat of desorption. The experimental design was completely randomized (CRD), with a factorial scheme (4 x 2), four drying temperatures (75, 90, 105 and 120 ºC) and two initial moisture contents (25 and 19% d.b.), with three replicates. The initial moisture content of the product interferes with the drying time. The model of Wang and Singh proved to be more suitable to describe the drying of soybeans to temperature ranges of the drying air of 75, 90, 105 and 120 °C and initial moisture contents of 19 and 25% (d.b.). The effective diffusivity obtained from the drying of soybeans was higher (2.5 x 10-11 m2 s-1) for a temperature of 120 °C and water content of 25% (d.b.). Drying of soybeans at higher temperatures (above 105 °C) and higher initial water content (25% d.b.) also increases the amount of energy (3894.57 kJ kg-1), i.e., the isosteric heat of desorption necessary to perform the process. Drying air temperature and different initial moisture contents affected the quality of soybean along the drying time (electrical conductivity of 540.35 µS cm-1g-1); however, not affect the final yield of the oil extracted from soybean grains (15.69%).Departamento de Engenharia Agrícola - UFCG2016-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662016000400385Revista Brasileira de Engenharia Agrícola e Ambiental v.20 n.4 2016reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v20n4p385-392info:eu-repo/semantics/openAccessCoradi,Paulo C.Fernandes,Carlos H. P.Helmich,Jean C.eng2016-03-18T00:00:00Zoai:scielo:S1415-43662016000400385Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2016-03-18T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false
dc.title.none.fl_str_mv Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures
title Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures
spellingShingle Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures
Coradi,Paulo C.
dimensioning
optimization
post-harvest.
title_short Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures
title_full Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures
title_fullStr Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures
title_full_unstemmed Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures
title_sort Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures
author Coradi,Paulo C.
author_facet Coradi,Paulo C.
Fernandes,Carlos H. P.
Helmich,Jean C.
author_role author
author2 Fernandes,Carlos H. P.
Helmich,Jean C.
author2_role author
author
dc.contributor.author.fl_str_mv Coradi,Paulo C.
Fernandes,Carlos H. P.
Helmich,Jean C.
dc.subject.por.fl_str_mv dimensioning
optimization
post-harvest.
topic dimensioning
optimization
post-harvest.
description ABSTRACT The aim of this study was to evaluate the influence of the initial moisture content of soybeans and the drying air temperatures on drying kinetics and grain quality, and find the best mathematical model that fit the experimental data of drying, effective diffusivity and isosteric heat of desorption. The experimental design was completely randomized (CRD), with a factorial scheme (4 x 2), four drying temperatures (75, 90, 105 and 120 ºC) and two initial moisture contents (25 and 19% d.b.), with three replicates. The initial moisture content of the product interferes with the drying time. The model of Wang and Singh proved to be more suitable to describe the drying of soybeans to temperature ranges of the drying air of 75, 90, 105 and 120 °C and initial moisture contents of 19 and 25% (d.b.). The effective diffusivity obtained from the drying of soybeans was higher (2.5 x 10-11 m2 s-1) for a temperature of 120 °C and water content of 25% (d.b.). Drying of soybeans at higher temperatures (above 105 °C) and higher initial water content (25% d.b.) also increases the amount of energy (3894.57 kJ kg-1), i.e., the isosteric heat of desorption necessary to perform the process. Drying air temperature and different initial moisture contents affected the quality of soybean along the drying time (electrical conductivity of 540.35 µS cm-1g-1); however, not affect the final yield of the oil extracted from soybean grains (15.69%).
publishDate 2016
dc.date.none.fl_str_mv 2016-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662016000400385
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662016000400385
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1807-1929/agriambi.v20n4p385-392
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
publisher.none.fl_str_mv Departamento de Engenharia Agrícola - UFCG
dc.source.none.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental v.20 n.4 2016
reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
instname:Universidade Federal de Campina Grande (UFCG)
instacron:UFCG
instname_str Universidade Federal de Campina Grande (UFCG)
instacron_str UFCG
institution UFCG
reponame_str Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
collection Revista Brasileira de Engenharia Agrícola e Ambiental (Online)
repository.name.fl_str_mv Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)
repository.mail.fl_str_mv ||agriambi@agriambi.com.br
_version_ 1750297684574470144