Modeling and thermodynamic properties of ‘bacaba’ pulp drying
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000900702 |
Resumo: | ABSTRACT This study aimed to dry ‘bacaba’ (Oenocarpus bacaba Mart.) pulp under different thermal conditions, fit different mathematical models to the dehydration curves, and calculate the diffusion coefficients, activation energy and thermodynamic properties of the process. ‘Bacaba’ fruits were meshed to obtain the pulp, which was dried at temperatures of 40, 50 and 60 °C and with thickness of 1.0 cm. Increase in drying temperature reduced the dehydration times, as well as the equilibrium moisture contents, and drying rates of 0.65, 1.04 and 1.25 kg kg min-1 were recorded at the beginning of the process for temperatures of 40, 50 and 60 °C, respectively. The Midilli’s equation was selected as the most appropriate to predict the drying phenomenon, showing the highest R2, lowest values of mean square deviation (MSD) and χ2 under most thermal conditions, and random distribution of residuals under all experimental conditions. The effective diffusion coefficients increased with increasing temperature, with magnitudes of the order of 10-9 m2 s-1, being satisfactorily described by the Arrhenius equation, which showed activation energy (Ea) of 37.01 kJ mol-1. The drying process was characterized as endergonic, in which enthalpy (ΔH) and entropy (ΔS) reduced with the increment of temperature, while Gibbs free energy (ΔG) was increased. |
id |
UFCG-1_f74ec5d4254e75745d8f457ffc2d903f |
---|---|
oai_identifier_str |
oai:scielo:S1415-43662019000900702 |
network_acronym_str |
UFCG-1 |
network_name_str |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
repository_id_str |
|
spelling |
Modeling and thermodynamic properties of ‘bacaba’ pulp dryingOenocarpus bacaba Mart.dehydrationdiffusivityABSTRACT This study aimed to dry ‘bacaba’ (Oenocarpus bacaba Mart.) pulp under different thermal conditions, fit different mathematical models to the dehydration curves, and calculate the diffusion coefficients, activation energy and thermodynamic properties of the process. ‘Bacaba’ fruits were meshed to obtain the pulp, which was dried at temperatures of 40, 50 and 60 °C and with thickness of 1.0 cm. Increase in drying temperature reduced the dehydration times, as well as the equilibrium moisture contents, and drying rates of 0.65, 1.04 and 1.25 kg kg min-1 were recorded at the beginning of the process for temperatures of 40, 50 and 60 °C, respectively. The Midilli’s equation was selected as the most appropriate to predict the drying phenomenon, showing the highest R2, lowest values of mean square deviation (MSD) and χ2 under most thermal conditions, and random distribution of residuals under all experimental conditions. The effective diffusion coefficients increased with increasing temperature, with magnitudes of the order of 10-9 m2 s-1, being satisfactorily described by the Arrhenius equation, which showed activation energy (Ea) of 37.01 kJ mol-1. The drying process was characterized as endergonic, in which enthalpy (ΔH) and entropy (ΔS) reduced with the increment of temperature, while Gibbs free energy (ΔG) was increased.Departamento de Engenharia Agrícola - UFCG2019-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000900702Revista Brasileira de Engenharia Agrícola e Ambiental v.23 n.9 2019reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online)instname:Universidade Federal de Campina Grande (UFCG)instacron:UFCG10.1590/1807-1929/agriambi.v23n9p702-708info:eu-repo/semantics/openAccessMorais,Maria F. deSantos,José R. O. dosSantos,Marisângela P. dosSantos,Dyego da C.Costa,Tiago N. daLima,Joel B.eng2019-08-08T00:00:00Zoai:scielo:S1415-43662019000900702Revistahttp://www.scielo.br/rbeaaPUBhttps://old.scielo.br/oai/scielo-oai.php||agriambi@agriambi.com.br1807-19291415-4366opendoar:2019-08-08T00:00Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG)false |
dc.title.none.fl_str_mv |
Modeling and thermodynamic properties of ‘bacaba’ pulp drying |
title |
Modeling and thermodynamic properties of ‘bacaba’ pulp drying |
spellingShingle |
Modeling and thermodynamic properties of ‘bacaba’ pulp drying Morais,Maria F. de Oenocarpus bacaba Mart. dehydration diffusivity |
title_short |
Modeling and thermodynamic properties of ‘bacaba’ pulp drying |
title_full |
Modeling and thermodynamic properties of ‘bacaba’ pulp drying |
title_fullStr |
Modeling and thermodynamic properties of ‘bacaba’ pulp drying |
title_full_unstemmed |
Modeling and thermodynamic properties of ‘bacaba’ pulp drying |
title_sort |
Modeling and thermodynamic properties of ‘bacaba’ pulp drying |
author |
Morais,Maria F. de |
author_facet |
Morais,Maria F. de Santos,José R. O. dos Santos,Marisângela P. dos Santos,Dyego da C. Costa,Tiago N. da Lima,Joel B. |
author_role |
author |
author2 |
Santos,José R. O. dos Santos,Marisângela P. dos Santos,Dyego da C. Costa,Tiago N. da Lima,Joel B. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Morais,Maria F. de Santos,José R. O. dos Santos,Marisângela P. dos Santos,Dyego da C. Costa,Tiago N. da Lima,Joel B. |
dc.subject.por.fl_str_mv |
Oenocarpus bacaba Mart. dehydration diffusivity |
topic |
Oenocarpus bacaba Mart. dehydration diffusivity |
description |
ABSTRACT This study aimed to dry ‘bacaba’ (Oenocarpus bacaba Mart.) pulp under different thermal conditions, fit different mathematical models to the dehydration curves, and calculate the diffusion coefficients, activation energy and thermodynamic properties of the process. ‘Bacaba’ fruits were meshed to obtain the pulp, which was dried at temperatures of 40, 50 and 60 °C and with thickness of 1.0 cm. Increase in drying temperature reduced the dehydration times, as well as the equilibrium moisture contents, and drying rates of 0.65, 1.04 and 1.25 kg kg min-1 were recorded at the beginning of the process for temperatures of 40, 50 and 60 °C, respectively. The Midilli’s equation was selected as the most appropriate to predict the drying phenomenon, showing the highest R2, lowest values of mean square deviation (MSD) and χ2 under most thermal conditions, and random distribution of residuals under all experimental conditions. The effective diffusion coefficients increased with increasing temperature, with magnitudes of the order of 10-9 m2 s-1, being satisfactorily described by the Arrhenius equation, which showed activation energy (Ea) of 37.01 kJ mol-1. The drying process was characterized as endergonic, in which enthalpy (ΔH) and entropy (ΔS) reduced with the increment of temperature, while Gibbs free energy (ΔG) was increased. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000900702 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662019000900702 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1807-1929/agriambi.v23n9p702-708 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Engenharia Agrícola - UFCG |
publisher.none.fl_str_mv |
Departamento de Engenharia Agrícola - UFCG |
dc.source.none.fl_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental v.23 n.9 2019 reponame:Revista Brasileira de Engenharia Agrícola e Ambiental (Online) instname:Universidade Federal de Campina Grande (UFCG) instacron:UFCG |
instname_str |
Universidade Federal de Campina Grande (UFCG) |
instacron_str |
UFCG |
institution |
UFCG |
reponame_str |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
collection |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental (Online) - Universidade Federal de Campina Grande (UFCG) |
repository.mail.fl_str_mv |
||agriambi@agriambi.com.br |
_version_ |
1750297686933766144 |